
i

SmartKart

Group G/Group 25

University of Central Florida College of Engineering and

Computer Science

Senior Design II

Final Documentation

Victoria Abreu - Computer Science

Christina Heagney - Computer Engineering

Lucas Ryan - Computer Science

Doran Senior - Computer Engineering

ii

Table of Contents

1. Executive summary 1
2. Project description 2

2.1. Motivation 2
2.2. Broader Impact 2
2.3. Goals & Objectives 2
2.4. Requirements & Specifications 3

2.4.1. General 3
2.4.2. Hardware 3
2.4.3. Software 3

2.5. House of Quality 4
3. Research 6

3.1. Similar Projects 6
3.1.1. Amazon Go 6
3.1.2. InMarket 6
3.1.3. Publix App 6
3.1.4. Retale App 7

3.2. Hardware 7
3.2.1. Microcontrollers 7

3.2.1.1. ATmega328P 7
3.2.1.2. Atmega2560 8
3.2.1.3. MSP430G2553 8
3.2.1.4. Comparison 8
3.2.1.5. Choice 9

3.2.2. Communication 9
3.2.2.1. Bluetooth 9

a. Adafruit Bluefruit LE SPI Friend 10
b. HC-05 Bluetooth Module 11

3.2.2.2. Wi-Fi 12
a. ESP8266 Wifi Transceiver Module Esp-01 13
b. Adafruit ATWINC1500 Wi-Fi Breakout 14

3.2.2.3. Choice 15
3.2.3. Components 15

3.2.3.1. Locking Mechanism 15
a. Electromagnetic 16
b. GS2 System 17
c. CAPS 18

3.2.3.2. GPS Overview 19
a. Trilateration 19
b. Error Correction 20
c. GPS Module 20

3.2.3.3. Sensors 22
a. RFID 22
b. Ultrasonic Sensor 25

3.2.4. Voltage Regulator 26

iii

3.2.4.1. Linear Voltage Regulator 27
3.2.4.2. Feedback Control Loop 27
3.2.4.3. Linear Voltage Regular Types 28

a. Standard Regulator 28
b. Low Dropout (LDO) Regulator 29
c. Quasi LDO Regulator 30

3.2.4.4. Switching Voltage Regulators 30
a. Buck (Step-down) Converter 31
b. Boost (Step-up) Converter 31

3.3. Software 32
3.3.1. Web Stack 32

3.3.1.1. LAMP 32
3.3.1.2. MEAN 33

3.3.2. Framework 33
3.3.2.1. PHP Laravel 33
3.3.2.2. Node.js 35
3.3.2.3. Angular.js 36
3.3.2.4. Choice 38

3.3.3. API 38
3.3.3.1. SOAP 38
3.3.3.2. REST 40
3.3.3.3. Choice 40

3.3.4. Web Sockets 41
3.3.5. Database 41

3.3.5.1. SQL (RDMS) 41
3.3.5.2. NoSQL 42

3.3.6. MVC 44
3.3.7. Applications 45

3.3.7.1. Android App 45
a. Native Android App 45
b. Cordova 46
c. Progressive Web Application 47

3.3.7.2. Choice 48
3.3.8. Web Service Provider 48

3.3.8.1. Amazon 49
3.3.8.2. Google 55
3.3.8.3. Choice 59

4. Related Standards and Design Constraints 60
4.1. Standards 60

4.1.1. PCI 60
4.1.2. Wi-Fi Standard 61

4.1.2.1. IEEE 802.11 61
4.1.2.2. IEEE 802.11b 61
4.1.2.3. IEEE 802.11a 61
4.1.2.4. IEEE 802.11g 62
4.1.2.5. IEEE 802.11n 62

iv

4.1.2.6. IEEE 802.11ac 62
4.1.2.7. Comparison 63

4.1.3. Security Standards 63
4.1.4. Battery Standards 65

4.1.4.1. Design Impact of Battery Standards 66
4.1.5. Programming Languages 67

4.1.5.1. C Programming Language 67
4.1.5.2. Node.js 69

4.1.6. Version Control 71
4.2. Constraints 73

4.2.1. Economic 73
4.2.2. Size/Portability 73
4.2.3. Environmental 74
4.2.4. Safety 74
4.2.5. Security & Scalability 74
4.2.6. Ethical 75

5. Project Design 76
5.1. Hardware 76

5.1.1. Initial System Design 76
5.1.2. Updated System Design 77
5.1.3. Logic Diagram 78

5.2. Software 79
5.2.1. UML 79
5.2.2. Action Sequence Diagrams 79
5.2.3. Application 83

5.2.3.1. UI/UX 84
a. Login 84
b. Signup 85
c. Profile 86
d. Home 87
e. Purchase History Summary 88
f. Purchase History Details 89
g. Coupons 90
h. Current Cart 91

5.2.3.2. System’s API 92
a. Cart 92
b. Shopping 92
c. User 93
d. Store 94

5.2.3.3. Third-Party API Calls 96
a. Bcrypt 97
b. Express 97
c. Passport-local 98
d. PdfKit 99
e. QRcode-reader 100
f. SendGrid 101

v

g. Socket.io 102
h. Stripe 103

6. Hardware Prototyping and Testing 106
6.1. Voltage Regulator Design 106

6.1.1. Linear Voltage Regulator 106
6.1.2. Step-Down Voltage Regulator 106
6.1.3. Comparison 108

6.2. Components 109
6.2.1. Breadboard Testing 110
6.2.2. GPS 111

6.2.2.1. Design 111
6.2.2.2. Testing 112

6.2.3. Locking 113
6.2.4. RFID 113

6.2.4.1. Design 113
6.2.4.2. Testing 115

6.2.5. Wi-Fi Communication 115
6.2.5.1. Design 115
6.2.5.2. Testing 116

6.3. Schematic Design 116
7. Administrative content 119

7.1. Milestones 119
7.2. Budget Analysis 121
7.3. Tools 122

7.3.1. POSTMAN 122
7.3.2. GitHub 123
7.3.3. Chrome Developer Tools 123
7.3.4. Visual Studio Code 124
7.3.5. Slack 124
7.3.6. Trello 125

7.4. Division of Labor 125
8. Project Summary 127
9. Appendices A1

9.1. UML Diagram A1
9.2. References A2
9.3. Copyright Permissions A5

1

1. Executive Summary
Shopping has become a regular routine and a necessity in our everyday lives,
however, it may cause some issues. Everyday shoppers spend extra time
collecting coupons and standing in line. The average duration of a shopping trip
lasts approximately 45 minutes; this does not include the amount of time spent by
shoppers who collect coupons. Our SmartKart shopping system remedies these
issues, and was designed with convenience of the shopper in mind.

With our system, shoppers will be able to cut the time spent at the grocery store,
by eliminating the need for standing in line. Our system will also allow users to
save more time by eliminating the coupon-cutting process. This will not only be
helpful to customers who routinely cut coupons, but it will allow other shoppers
who traditionally do not cut coupons to save money as well.

Our system will employ an RFID system, which will keep track of all items a
shopper places in their shopping cart. From there, this information will be sent to
the user’s smart phone, where they will be able to easily view the total cost of the
items in their shopping cart, and any coupons relevant to their items that are
currently offered at that grocery store. In addition to this, users will be able to view
all previous purchases made from their account, and all receipts will be sent to
their email account.

The SmartKart shopping system will also employ a GPS and locking mechanism,
to help the grocery stores prevent theft of the carts. The locking mechanism will be
attached to the wheels of the cart, so that when the GPS system detects that the
cart has traveled outside of the store’s perimeter, the lock will engage and the cart
will lose mobility.

This report documents the research and design done by our team to help bring the
SmartKart shopping system to fruition. It will indicate our team’s motivations and
goals for creating this project, and it will also describe the specifications and
requirements for the system.

Following this will be information regarding the research done for the design of our
system, including the software and hardware components considered, and other
projects that have similar functions to our design. In this section, our team made
important decisions in regards to which hardware components and software
applications to implement in our system.

The document will then discuss related standards and constraints that helped to
shape the design of the system. We will then discuss the details of the hardware
and software design, and the results of our component prototyping and testing.
Finally, the document will conclude with the administrative section, which details a
milestone chart to help our team reach goals, as well as a layout of our system’s
budget.

2

2. Project description
This section discusses the motivation, goals, and objectives behind the SmartKart
shopping system. It also goes in to detail about the requirements and specifications
for the hardware and software components implemented in the system.

2.1. Motivation
Currently when a person goes shopping they might have a hassle that can be
averted. The average customer spends time searching and collecting coupons,
only to forget them, rendering them useless. Regardless of the store, a customer
can always expect to wait in long lines before cashing out. Also, customers with a
budget must continuously check that they have haven’t exceeded their allotted
funds. With all these factors, a simple task like shopping can become hectic and
waste time that can better be used elsewhere for the common shopper. Motivated
by the Amazon Go Supermarket, which improves shoppers’ experiences and gets
rid of checkout lines, our project is a more affordable alternative. The proposed
project not only removes the issue of long lines, but also assists users by providing
coupons available at the current store and displaying the cost of the products in
their shopping cart.

2.2. Broader Impact
Currently, shoppers may spend valuable time reading store ads and collecting
coupons, and can expect to wait in long lines as they checkout at the store.
Although self-checkout machines offer an alternative to the customary cashier-
checkout process, whenever a shopper wishes to remove an item from their
purchase, they must wait for an employee to assist them, thus increasing wait and
checkout times. The main goal of the SmartKart system is to automate the
checkout process and improve the user’s shopping experience. Users will be able
to easily audit previous purchases, view products and coupons/promotions offered
at a particular store, and keep track of the current cost of the products in their
shopping cart, all from a mobile device. The SmartKart system will assist retail
stores in decreasing overhead, and collecting customer and product data, which is
critical for financial decisions.

2.3. Goals & Objectives
The goal of our project is to create a lightweight, portable device that can be
integrated onto common shopping carts that will improve the shopping experience.
Once shoppers create an account, they can login to any available cart and begin
shopping. Using RFID and GPS, users will be able to add and remove items from
their cart, and once they exit the store, their debit/credit card will be charged and
the user will receive an electronic receipt sent to their email. There will also be a
locking mechanism that will prevent theft of these cart. The wheels on the cart will
lock once it surpasses a distance from a specified radius of the store. There will
be a backend system that will store the current coupons available, account
information, and handle payment transactions.

3

2.4. Requirements & Specifications
This section discusses the requirements and specifications of the SmartKart
shopping system. It discusses in detail the general specifications of the cart, such
as dimensions, weight, and cost, as well as the hardware and software
requirements.

2.4.1. General
 The overall shopping cart shall be no bigger than 38 by 22 by 41 in.

 The shopping cart shall weigh no greater than 60 lbs.

 The overall system shall cost no more than $500 to build.

 The user shall be able to grasp the functionality of the GUI in
approximately one minute.

 The device will allow users to purchase at least 25 items.

2.4.2. Hardware
 The store items shall have a passive RFID tag attached to them.

 The microcontroller shall use RFID sensors to read the RFIDs
contained on each store item’s RFID tags.

 The time it takes for an RFID sensor to recognize an RFID tag shall
be no greater than 50 milliseconds.

 The distance required for an RFID sensor to recognize an RFID tag
shall be no less than two feet.

 The microcontroller shall keep track of the shopping cart’s location
via a GPS module

 There shall be one electronic locking device, which locks the back
two wheels.

 The wheels shall have an electronic locking device attached to them,
and shall lock based on the shopping cart’s location.

 The microcontroller shall send the data from the RFIDs to the android
device via bluetooth communication.

 The power supply of the overall system shall supply a voltage no
greater than 12 volts.

 The power supply shall power the system for at least one hour.

2.4.3. Software
 The system will return product information from the database back

to application running on the android device.

 The application will be able to display between 5 and 10 coupons at
a time on the coupon section of the user interface.

 The application will be able to display user purchases in the cost
section of the user interface.

 The application will be able to display a user’s previous purchases.

4

 The application will only allow users with a verified ‘active’
credit/debit card.

 The application will allow users to select which shopping cart to pair
with.

 Once the application receives the product data from the database it
will update and apply the coupons under 1 second.

 Communication between the system and application must be
encrypted(SSL/TLS/HTTPS) when user is cashing out.

 The system will use a credit/debit card processing application to
store credit/debit card information and charge users.

 The system will send an electronic receipt to user’s specified email.

 The application must validate user input before submitting
information.

2.5. House of Quality
The house of quality, shown in Table 1, is a diagram whose structure depicts the
relationship between the engineering requirements and marketing requirements
as applicable to our SmartKart shopping system.

B
at

te
ry

 L
if

e

Ti
m

e
to

 L
ea

rn

D
im

en
si

o
n

s

C
o

st

W
ei

gh
t

St
ar

tu
p

 T
im

e

+ + - - - -

RF Sensor
Scanning
Distance

+ ↑ ↑ ↑ ↓↓ ↑

Cart Usability
Radius

+ ↑ ↑ ↑ ↑

Input Voltage - ↓↓ ↑ ↑ ↓ ↓ ↑

Sensor Scanner
Accuracy (ms)

+ ↑ ↓↓ ↓ ↑

Cost - ↓ ↓ ↓ ↓

 > 1 hour < 2 min 6 x 6 x 3
in.

< $300 < 10 lbs < 1 min

Table 1. House of Quality Diagram

5

Marketing requirements are a set of needs and wants from the perspective of the
potential consumer. This includes things such as cost, which consumers want as
low as possible. The cost value under the marketing requirements means the cost
of the product that the end user will pay.

The time to learn is also a crucial element to the system’s marketing requirements;
the SmartKart should be user-friendly and intuitive enough for all shoppers to
understand, regardless of age and prior technology experience. As this system will
be utilized by customers daily, it needs to be simple and straightforward enough
so that shoppers may not only learn it quickly, but also be able to retain this
information for ease of their future shopping trips.

The marketing requirements also include battery life for the system, which should
be as high as possible. The average shopping trip lasts approximately 41 minutes,
and thus, our specification is that the battery should be capable of powering the
SmartKart system for at least an hour.

As for the remainder of the marketing requirements, the only requirement for the
dimensions of the overall system is that it may easily fit underneath the shopping
cart and away from user interferences. The weight of the system should also be
light enough such that it does not hinder the shopping cart’s mobility. It is also
desired that the system have a quick start up time, so that customers may quickly
begin their shopping trips without being hindered by the system’s initialization.

In regards to the engineering requirements, these specifications were created with
the engineers and designers in mind. The RFID system should have a large
scanning distance and accurate sensors in order to pick up all items being put into
the shopping cart at any position.

The GPS portion of the system should also have a radius large enough to cover
the entire perimeter of the grocery store. It is desired that the cost be minimal, and
the input voltage be low, to help preserve battery life.

6

3. Research
This section will be used to discuss the research our group performed in
preparation of building our SmartKart shopping system. This includes information
on similar projects, hardware components, such as micro-controllers and wireless
communication, as well as software applications, such as frameworks and APIs.

3.1. Similar Projects
This section will discuss other services and applications that are already on the
market, which have similar aspects to our proposed SmartKart shopping system.
These include Amazon Go, InMarket, and the Publix and Retale applications.

3.1.1. Amazon Go
Announced in December 2016, Amazon Go has revolutionized the idea of
supermarket shopping. Using advanced machine learning, computer vision, and
sensor fusion concepts to retrieve data from many sensors, Amazon is improving
shopping experiences with their checkout-free technology. The system will keep
a virtual shopping cart of products the customer has placed in their physical
shopping cart, will the ability to detect whenever a user adds or removes an item
from their cart. This removes the requirement for checkout lanes to check what a
user has in their cart. The only requirement is having the Amazon Go app and
login with a working Amazon account.

3.1.2. InMarket
One company that is implementing Bluetooth technology to improve customer
experience is inMarket. InMarket’s Mobile to Mortor iBeacon platform integrates
Apple’s iBeacon Bluetooth with GPS technology on mobile devices to tracker
user’s location and send them notifications of coupons and items from nearby
stores that support inMarket. InMarket uses iBeacons as location markers inside
retailer stores to anonymously track location of customers in a store, allowing
retailers to notify customers of discounts on items near their location. Note, by
implementing a mesh network of beacon technology, retailers can enhance
shoppers’ experience by providing navigation tools on their retail apps to assist
shoppers in finding products in their store.

3.1.3. Publix App
Available for Android phones, the Publix app allows users with accounts to keep
track of their shopping list and find closest store and store information to them.
Users can create, save, edit, and review grocery lists, using the built-in barcode
scanner feature, they can scan and add item to their shopping list. Once a user
selects a store, they can browse products and promotions available at the store.
Users can save a virtual copy of store coupons allowing the user to redeem them
at the store. The app allows users to browse products on sale by category or

7

department. The Publix App saves users time with searching for store coupons
and notify users what isle the items on their grocery list are located in the store.

3.1.4. Retale App
Retale App is a native Android applicate that allows users to view electronic
version of coupons currently available at stores. With this app, users can select
their favorite stores and receive notifications of new deals related to their favorite
stores. Once users create a shopping and grocery list, Retale can do a lookup to
see what items on their list have discounts in nearby area. Instead of requiring
users to bring printouts or cutouts of coupons to apply additional sales to purchase,
Retale allows users to display a digital copy of coupons to the clerk to receive the
discount. This app saves its users money by notifying them of discounts that can
be applied to groceries they plan on purchasing and time spent on collecting and
making physical copies of coupons.

3.2. Hardware
This section introduces the hardware components that will be employed in our
SmartKart shopping system. This includes micro-controllers, wireless
communication, the power supply, GPS modules, RFID sensors, locking
mechanisms, and our overall PCB design.

3.2.1. Microcontrollers
For this project, a microcontroller is needed to perform essential functions. Some
of the components that the microcontroller will operate are an RFID sensor, GPS
module, WIFI module, and locking mechanism on the wheels. When the RFID
sensor receives an RFID, the microcontroller will need to pull the RFID from the
sensor and send the RFID to the application’s database via the WIFI module.
Additionally, the GPS module will constantly need to update the microcontroller on
the location of the shopping cart. If the condition for valid locations has been
broken, then the microcontroller will need to use the locking mechanism to lock the
wheels.

This section will look into the technical specifications of three different
microcontrollers, and see which microcontroller best fits this projects needs and
requirements. These are the MSP430G2553, ATmega328P, and ATmega2560

3.2.1.1. ATmega328P (Arduino MEGA)
The ATmega328P has an 8-bit architecture, 32KB memory, three timers, a
maximum clock frequency of 20MHz, and can operate between 1.8V to 5.5V. The
Arduino UNO series generally uses this microcontroller. Arduino is fairly popular
within the embedded programming community, due to its user-friendliness, large
community, and many examples and tutorials that can be found online. This MCU
can potentially be a major advantage to this project. Even though our embedded

8

programmers are more familiar with programming with MSP430s, the vast amount
of online resources for programming the ATmega328P would aid in resolving this
matter.

3.2.1.2. Atmega2560 (Arduino UNO)
The ATmega2560 has an 8-bit architecture, 256KB memory, six timers, a
maximum frequency of 16MHz, and can operate between 4.5V to 5.5V. This
microcontroller is generally found within the Arduino Mega. The ATmega2560
essentially has all the features as the ATmega328P and more. It is ideal for
embedded applications that require a large amount of component and larger code
size. The process of performing the embedded programming with the
ATmega2560 would not be so difficult with the available resources online.

3.2.1.3. MSP430G2553 (Texas Instruments)
This microcontroller is the same one that is used in the laboratory for Embedded
Systems. Since our embedded programmers have experience programming with
this microcontroller, there would be a minimal learning curve when writing the
software to make all the components communicate effectively. Some of the
features it has is that it can operate between 1.8V to 3.6V, has a maximum clock
frequency of 16MHz, 16KB memory, and two 16-bit timers. Additionally, it offers
five low-power modes, and the microcontroller is inexpensive (costs around
$10.00).

3.2.1.4. Comparison
The following table is a comparison of all micro-controller modules considered,
including the MSP430G2553, ATmega328P, and ATmega2560.

Table 2: Microcontroller Comparison

Features MSP430G2553 ATmega328P ATmega2560

Operational
Voltage

1.8V – 3.6V 1.8V – 5.5V 4.5V – 5.5V

Power
Consumption

Active Mode:
230μA w/ 1 MHz

Off Mode:
0.1μA

Active Mode:
0.2mA w/ 1 MHz

Off Mode:
0.1μA

Active Mode:
500μA w/ 1 MHz

Off Mode:
0.1μA

CPU
Architecture

16-bit RISC 8-bit RISC 8-bit RISC

Memory 16 KB FLASH
0.5 SRAM

32 KB FLASH
1 KB EEPROM

2 KB SRAM

256 KB FLASH
4 KB EEPROM

8 KB SRAM

Analog I/O Both Input only Input only

Digital I/O Both Both Both

Maximum Clock
Frequency

16 MHz 20 MHz 16 MHz

9

Features MSP430G2553 ATmega328P ATmega2560

Number of
Clocks

2 3

6

Low Power
Mode

Yes Yes Yes

I/O Pins 24 23 86

Temperature
Range

-40°C to 85°C -40°C to 85°C -40°C to 85°C

Price $9.99 $24.95 $45.95

3.2.1.5. Choice
After careful analyzation of Table 2, it was decided that the ATmega328P MCU
would best serve this project for several reasons. The ATmega328P provides a
clock frequency of 20MHz, which means overall better processing speed and
performance. The ATmega328P also has access to three clocks, while the
MSP430G2553 only has two. Having only two clocks available might hinder the
implementation process when writing the program that will monitor the GPS
module, locking mechanism, RF sensor, and WIFI module. Three clocks are ideal,
since one clock can be used to handle interrupts for the RF sensor and WIFI
module, one clock can be used to handle the interrupts for the GPS Module and
locking mechanism, and the other clock can be used to monitor the overall system.
Additionally, analog output does not need to be provided to any of the components
for this project, so this feature that the MSP430G2553 has would be left unused.
The operational voltage for the ATmega328P has a maximum voltage of 5.5V,
which would be more ideal for our battery. The battery would supply a voltage of
either 9V or 12V. Using the battery in combination with a buck converter and the
ATmega328P would produce a minimal dropout voltage and less power
dissipation. While the ATmega2560 has all features of the ATmega328P and more,
many of its features would most likely not be needed. For example, all 6 clocks
and 86 general-purpose I/O pins would not be used, and would lead to
wastefulness. The ATmega328P has everything that is desired and does not leave
behind too many features that will go unused.

3.2.2. Communication
The SmartKart system requires a method of communication between the
microcontroller and the user’s mobile device to allow for easy and practical use.
The following sections will discuss the different types of wireless communication
technology components that our team considered, the advantages and
disadvantages of each component, and a thorough analysis of how teach device
operates. Analyzing each component from a low level perspective allows our team
to fully optimize the design of our SmartKart system.

3.2.2.1. Bluetooth
Bluetooth is a universal wireless standard used for connecting digital devices. It

10

eliminates the need for wires or cables by alternatively using radio waves, ranging
from 2.40GHz-2.485GHz, to allow the devices to communicate. Each Bluetooth
device is embedded with a transceiver microchip, which allows it to connect and
communicate, or “pair”, with other in-range devices that also possess Bluetooth
capability.

Since Bluetooth uses radio frequencies to communicate, it does not need line-of-
sight to communicate. Any device may connect with several other devices at one
time, so long as they are all Bluetooth enabled, and within transmission range.
Bluetooth data transmission will not interfere with other types of data
transmissions, such as RF devices and WLAN.

Bluetooth is commonly used in computers, smart phones, music players, and a
multitude of other smart devices. Bluetooth technology allows for easy installation
and connection, and it is also inexpensive. Disadvantages include security risks,
as Bluetooth devices may be easily hacked, and short-range communication, as
the transmission range is approximately 30 feet

a. Adafruit Bluefruit LE SPI Friend

Figure 1. Bluefruit LE SPI Friend

The Adafruit Bluefruit LE SPI Friend is a module that allows for seamless
incorporation of Bluetooth Low Energy into electronic projects. Bluetooth Low
Energy is intended to require significantly less power consumption than Classic
Bluetooth, while still maintaining a comparable communication range. This is
achieved as the Bluetooth Low Energy protocol only sends data as needed,
instead of maintaining a constant connection running, making it an excellent option
for devices that are fueled by power sources, and need to be power consumption-
friendly.

This module allows you to easily add Bluetooth Low Energy wireless connection
to any devices supporting SPI. The following includes the technical specifications
for the Adafruit Bluefruit LE SPI Friend module, as provided by the official Adafruit
website, www.adafruit.com:

11

 ARM Cortex M0 core running at 16MHz

 256KB flash memory

 32KB SRAM

 Transport: SPI at up to 4MHz clock speed

 5V-safe inputs (Arduino Uno friendly, etc.)

 On-board 3.3V voltage regulation

 Bootloader with support for safe OTA firmware updates

 Easy AT command set tunneled over SPI protocol to get up and
running quickly

 23mm x 26mm x 5mm / 0.9" x 1" x 0.2"

 Weight: 3g
As sold by the official Adafruit website, this module may be purchased for $17.50.

b. HC-05 Bluetooth Module

Figure 2. HC-05 Bluetooth Module

The HC-05 is a Bluetooth module that behaves as either a master or slave device.
This module can be used to build a wireless connection to other devices. For our
system, the user’s phone would connect to it; after the RFID scans a tag, its value
would be sent to the phone, and the phone would send it to the server.

This module contains a variety of pins. The KEY pin is used to trigger the AT
command setup mode. The VCC pin is used for powering the device. The GND
pin acts as a ground. TXD is the serial output pin, used to transmit data between
the module and the microcontroller. RXD is the serial input pin, used to receive
data from the microcontroller’s serial transmit. The STATE pin is used to verify if
the device is actively connected.

The following includes the technical specifications for the HC-05 Bluetooth
module:

 Operating Voltage: 3.3V

 Baud rate(s): 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

 Dimensions: 28mm x 15 mm x 2.35mm

 Operating Current: 40 mA

12

3.2.2.2. Wi-Fi
Wi-Fi is a type of electromagnetic radiation that is used to provide internet
connectivity to electronic devices. This technology allows for wireless connectivity
for many devices, such as computers, mobile phones, and tablets[c1]. Wi-Fi’s
wavelength is approximately 12cm, which gives it a range of approximately 50-100
meters.

WiFi utilizes radio waves to transmit data and information across the network. A
wireless transmitter receives data from the network, then converts this data into
radio waves and emits them. This creates a Wireless Local Area Network, or
WLAN, allowing all devices within range to wirelessly connect to the network. On
the other hand, if the user attempts to send data through the internet, this
procedure acts in reverse; the wireless transmitter will receive the data as a radio
signal from the user’s device, and will convert this signal to be communicated back.

Some advantages of Wi-Fi include convenience, mobility, and expandability.
Wireless networks provide users with the capability of accessing the internet from
nearly any location that is convenient to them within range of their network. This is
particularly useful for mobile devices, such as laptops, smartphones, and tablets.
Mobility also plays a large factor into the benefits of Wi-Fi. This allows users to
access the network outside of their typical home environment, in places such as
shopping stores and coffee shops. So long as there is a public network connection,
the user will still have full connection capabilities.

Expandability is another advantage of Wi-Fi communication. A wireless network
may easily accommodate an increased number of users, so long as all clients are
within the network range, whereas wired networks would entail additional wiring in
order to expand the internet access capabilities to support a larger amount of
users.

The disadvantage of Wi-Fi is that it may be easily interfered with. There are many
physical barriers, such as wood, concrete, and metal, that prevent a WiFi signal
from reaching its full range. There may also be frequency interference, stemming
from microwaves, other wireless devices, or even other WiFi Networks, that may
cause interference with a WiFi signal. WiFi may not always be reliable, as it is
subject to the aforementioned every day interferences.

Other disadvantages include security, as public networks are inherently unsecure
and may be easily compromised by hackers, and range, as the typical network
may only span about 10 meters, and expanding this range will require additional
network access points to be purchased, which may quickly increase costs.

13

a. ESP8266 Wifi Transceiver Module Esp-01

Figure 3. ESP8266 Wifi Transceiver

The ESP8266 Transceiver module is a system-on-a-chip, or SOC, that integrates
the TCP/IP protocol stack; it allows for Wi-Fi network access to any microcontroller.
The ESP8266 module is pre-programmed so that the user may simply connect the
module to a microcontroller and obtain a comparable amount of Wi-Fi capability as
a Wi-Fi shield would offer.

This module has powerful on-board processing and storage, which allows for easy
integration of sensors and “other application specific devices” through its general-
purpose input/output pins with minimal up-front development and runtime loading.

Serial-to-WiFi modules utilize serial Transceivers/Receivers to send and obtain
Ethernet buffers, and may use serial commands to modify the settings of the
module. In order to communicate amid the Wi-Fi [c1] and a microcontroller, the
module requires two wires, the Transceiver and Receiver.

An advantage of the ESP8266 module is that it is specifically designed to be an
energy-efficient, low-power consumption, module. This module operates in three
separate modes: active mode, sleep mode, and deep sleep mode. These different
options are beneficial, as you can modify the module to fit the needs of your project.
For the SmartKart, it would be most beneficial to use the sleep mode, or deep
sleep mode, as our system will be running off of a battery, and thus, will need to
use an option that consumes less power.

One disadvantage is that this module is not breadboard-friendly, meaning that the
user cannot simply plug it in to a breadboard for quick prototyping. This issue
requires the user to either employ female-to-male jumper wires or a breadboard
adapter in order to properly set up the module for testing.

The following includes the technical specifications for the ESP8266 Serial Wireless

14

Wifi Transceiver module, as provided by the official SparkFun Electronics website,
www.sparkfun.com:

 802.11 b / g / n

 Wi-Fi Direct (P2P), soft-AP

 Built-in TCP / IP protocol stack

 Built-in TR switch, balun, LNA, power amplifier and matching network

 Built-in PLL, voltage regulator and power management components

 802.11b mode + 19.5dBm output power

 Built-in temperature sensor

 Support antenna diversity

 off leakage current is less than 10uA

 Built-in low-power 32-bit CPU: can double as an application
processor

 SDIO 2.0, SPI, UART

 STBC, 1x1 MIMO, 2x1 MIMO

 A-MPDU, A-MSDU aggregation and the 0.4 Within wake

 2ms, connect and transfer data packets

 standby power consumption of less than 1.0mW (DTIM3)

As sold by Amazon.com, this module may be purchased for $6.99.

b. Adafruit ATWINC1500 Wi-Fi Breakout

Figure 4. ATWINC1500

The Adafruit ATWINC1500 Wi-Fi Breakout module is used to connect your Arduino
to the internet. This module includes Secure Sockets Layer (SSL) support, which
is a standard in security which establishes an encrypted link between a client and
its server. It also utilizes the SPI protocol to communicate, which means it may
quickly communicate with several devices over short distances.

15

One disadvantage to this module is that it is less cost efficient than other wireless
communication alternatives. As sold by the official Adafruit website, this module
may be purchased for $24.95, making it the priciest module to be considered for
our wireless communication requirements.

The following includes the technical specifications for the Adafruit ATWINC1500
WiFi Breakout module:

 33mm x 28mm x 4mm

 Weight: 4.4g

c. Esp8266 Esp-12e

For wireless communication, the component of choice was the ESP8266-12e
module. This module is ideal, as it has a connectivity range of approximately 1,000
feet, Serial and SPI interfacing, and is also HTTPS enabled. Similar to the ESP-
01, the 12e version is not breadboard-friendly.

As sold by Amazon.com, a pack of two ESP-12e modules may be purchased for
$9.87.

3.2.2.3. Comparison
After extensive research, our team decided that the Adafruit Bluefruit LE SPI
Friend and the HC-05 Bluetooth modules did not meet the needs and requirements
of our project, and thus will not be used.

As observed, one of the benefits of the ESP8266 12E WiFi Module is that it is very
cost efficient, and may be purchased on Amazon as a set of 2 for only $9.87. In
contrast, the Adafruit ATWINC1500 WiFi Breakout module is sold at $24.95 per
device. This module is also ideal for the SmartKart system as it a sufficient
connectivity range, is HTTPS enabled, and supports Serial and SPI interfacing.

Our team will ultimately use the ESP8266 12E Wifi Transceiver Module as our
choice of wireless communication for our SmartKart system.

3.2.3. Components
This section will discuss the different components needed for our system’s design,

including the locking mechanism, GPS system, and sensors. It will detail an

overview of each of the sections, and specify which components were considered

for each.

3.2.3.1. Locking Mechanism

16

Our SmartKart system will also employ a locking mechanism to help prevent theft.
The locking mechanism will be set up in correlation to our GPS module. When the
GPS module detects that the SmartKart shopping cart has gone outside of a
predetermined range, the wheels on the cart will lock.

There are two distinct concepts regarding locking devices. The first is a “fail-safe”
lock. Fail-safe locks will lose connection and unlock when the power fails. These
types of locks are typically used in situations where safety is at risk; it is ideal for
locks such as on fire exit doors. The second, “fail-secure” locks, remain locked
when the power is cut. These locks are more ideal when security is of utmost
importance, in places like banks or government facilities.

One of the locking mechanism options to be considered by our team is the
Electromagnetic lock. The other options are locking systems that are already
employed by stores to ensure protection of their shopping carts; these include the
GS2 and CAPS systems.

a. Electromagnetic
The first option to consider is an electromagnetic lock. Electromagnetic locks
consist of both an electromagnet and an armature plate. When the electromagnet
is energized, it becomes strongly attracted to the armature plate. This is due to the
current that passes through the electromagnet when power is applied; this current
creates a magnetic flux, causing the two components to attract each other. When
these two components are in contact with each other, they create a securely locked
connection.

The majority of electromagnetic locks are inherently fail-safe; when disconnected
from their power source, they will automatically unlock. However, some may be
constructed to be fail-secure devices. These locks use magnets to clasp on to a
spring-loaded locking mechanism, so that the door may only unlock when the
power is on.

There are many advantages to electromagnetic locks. One is that the lock may be
easily turned on or off by simply adjusting the status of the power source. They are
also easy to install, in comparison to other types of locks, as they consist of two
main parts (the electromagnet and armature plate), and require no interconnecting
components. They are also quick to release when the power source is cut, which
is vital in emergency situations. Electromagnetic locks are also quite sturdy; if the
lock is forced open, the physical components will generally suffer from little to no
damage, as the lock does not consist of any movable, breakable components.

There are also a few disadvantages to using electromagnetic locks. One downfall
of these locks is that they require the power source to be constantly active in order
for the lock to remain secure. This means that they also pose security risks, as the
locks may be compromised by simply cutting the power source. These locks are
also more expensive than traditional mechanical locks, and in order to implement

17

a “fail-secure” system, additional hardware will be required, such as a magnetic
bond sensor, which will further increase cost.

Electromagnetic locks are built with metal plates, which are encompassed by a coil
of wire in order to establish a secure attraction between the electromagnet and the
armature plate. Depending on the number of coils, the lock will have different
holding forces. The following table demonstrates the range of holding forces that
electromagnetic locks may employ:

Table 3. Electromagnetic lock holding forces

Lock Size Holding Force

Micro Size 275 lbf

Mini Size 650 lbf

Midi Size 800 lbf

Standard Size 1,200 lbf

Shear Lock 2,000 lbf

b. GS2 System
The GS2 wheel is one of the most popular shopping cart theft-prevention
mechanisms used today. The system is comprised of an RF receiver antenna and
a Perimeter Antenna. The RF receiver antenna within the GS2 wheel receives a
signal from the Perimeter Antenna; when the shopping cart enters the range of
which the Perimeter Antenna, and crosses the transmitter boundary, a locking
signal is sent out to the GS2 wheel, and tells it to lock the shopping cart. The
amount of time it takes for the signal to be transmitted from the Perimeter Antenna,
and received by the GS2 wheel, is approximately 2.2 second.

There are two methods to unlocking the shopping cart. The first is that a signal
must be sent from the CartKey remote control, which will be controlled by a store
employee. The signal from this remote control unit is approximately 4 feet. The
second involves the Perimeter Antenna; this must be set to Master Unlock mode,
and from there it may send a signal to the GS2 wheel to unlock the cart.

In the event of a system failure, the GS2 wheel takes a “fail-secure” approach. The
only chance of a system failure would occur when the GS2 wheel is already in the
locked position, and as such, would remain locked. This could be due to a physical
component of the wheel failing while in use.

18

As for the power supply, the GS2 system runs off of a CR123A, 3-Volt lithium
battery. This battery is durable and assumes a long life expectancy, with a shelf
life of approximately ten years when uninstalled, and five years when installed, but
inactive. The GS2 system is expected to last approximately three to four years,
under the assumption that the wheel will go through a daily process of being in the
locked and unlocked state, four times each day. This is beneficial for shopping
stores, as it cuts back on labor and expenses in regards to replacing the power
system for each shopping cart.

c. CAPS
Carttronics’ CAPS is an alternative cart retention system to GS2. This system is
comprised of a gauge antenna wire, a signal transmitter, and a Carttronics’ locking
CAPS caster. The antenna wire is used to draw boundaries around the store’s
perimeter to set a range for how far the shopping carts are allowed to migrate. The
transmitter is located inside the store; when a shopping cart passes over the
perimeter, the transmitter sends a signal to the CAPS caster, which deploys a
braking shell on the wheel, preventing any further movement. The system’s
braking shell may be removed by the stores employee with the use of a reset
controller, which will allow the cart to return to normal operation.

The following lists key features regarding Carttronics’ CAPS shopping cart locking
system, as provided by the official Carttronics website, www.carttronics.com:

 Highly effective, durable and visible braking shell that serves to stop
the cart and protect the wheel from flat spots

 Visible braking shell provide “notice” to customers and store
personnel to minimize the risk of injury and liability and expedite
recovery and return to service

 Modular, maintainable hardware enables repair and reuse and the
industry’s lowest lifetime cost of ownership

 With internet connectivity, provides around-the-clock remote
monitoring

 Availability of parts and components to facilitate self-maintenance or
3rd party managed preventative maintenance programs

 Includes web-based maintenance and operations training programs
and supporting management reports

 Option to include automated battery voltage monitoring and other
software services

19

3.2.3.2. GPS Overview

Figure 5. GPS Constellation and Trilateration (Northrop Grumman)

The Global Positioning System (GPS) was created by the United States
Department of Defense for military use, and was later changed for civilian use.
GPS consists of a constellation of 27 Earth-orbiting satellites. Each satellite weighs
about 3,000 to 4,000 pounds, and can be positioned as much as 12,000 miles
(19,300 km) from the earth’s surface. A GPS receiver is used in many devices to
calculate the exact position the device is on the earth’s surface, relative to the
satellites. To accomplish this, a GPS receiver needs to locate at least 4 or more
satellites and find its distance between each satellite. This information can then be
used to calculate positioning information, such as latitude, longitude, and altitude.
This process is known as three-dimensional trilateration.

a. Trilateration

Figure 6. GPS Receiver Location (GPS Reflections Research Group)

20

The GPS receiver distinguishes the satellites through a unique binary code
associated with each one. The receiver also has these codes stored in its memory,
so that it can identify which satellite it is receiving a radio signal from. When a
satellite sends out its code to a GPS receiver via radio signal, the receiver
compares the received code with the satellite codes in its memory, to identify the
satellite. The code is shifted by a given number of bits to represent the travel time.
For example, if the code is shifted by 25 bits, then we could say it took 25
milliseconds for the satellite’s signal to reach the receiver.

The travel time can then be multiplied by the speed of light to calculate the distance
the satellite is from the receiver. This distance is used as the radius of a sphere
around a satellite, with each point on the sphere indicating a possible given point
the receiver is located. After 4 or more satellites have sent their codes to the
receiver and their spheres have been created, the receiver’s position can be found
from the point at which all the spheres intersect adjacent to the earth’s surface.
From this point, the receiver’s longitude, latitude, and altitude can be found.

To make an accurate positioning, the clocks operating on the satellite and receiver
need to be synchronized. Atomic clocks are used in satellites to provide exact time
tracking, but are not used for receivers, due to atomic clocks being extremely
expensive. To solve this, the clock on the GPS receiver is constantly reset and
then set to the same time value the satellites have.

b. Error Correction

Errors can occur when calculating the distance a satellite is from a GPS receiver.
The earth’s electromagnetic field can slow down the travel speed of a satellite’s
radio signal, and radio signals can also bounce off sizable objects. When situations
like these occur, the distance calculated can sometimes be misrepresented. To
solve this, differential GPS (DGPS) stations are used. DGPS stations are fixed at
one location, so their position is always known. With this new information, any
distance inaccuracy is found and corrected. The error correction can be
broadcasted to DGPS-compatible receivers in the surrounding area, and these
receivers will make the necessary adjustments.

c. GPS Module

For this project, a GPS module will be needed to track the shopping cart’s position
relative to the grocery store. The software within the microcontroller will use the
GPS module to constantly know its location. The location of the grocery is fixed,
and its coordinates will be known. If the GPS module’s latitude/longitude
coordinates have an 80 meter difference than the store’s latitude/longitude
coordinates, the microcontroller will lock the wheels of the shopping cart. This
procedure would a customer prevent stealing a shopping cart. In the inevitable
chance a customer places the shopping cart in their car and drives off, the GPS

21

module will still be tracking the cart’s location, which could be used to locate and
apprehend the thief.

There are two GPS modules that are sought after for this project. They are the
Adafruit Ultimate GPS Breakout and the U-Blox NEO-6M GPS Module. Listed
below are some of the technical specifications associated with the modules.

Table 4: GPS Technical Specifications

Feature Adafruit Ultimate GPS
Breakout

U-Blox NEO-6M GPS
Module

Satellites 22 tracking w/ 66 channels 50 channels

Patch Antenna
Size

15 mm x 15 mm x 4 mm N/A

Update Rate 1-10 Hz 5 Hz (max)

Position Accuracy 3 m N/A

Velocity Accuracy 0.1 m/s 0.1m/s

Warm/Cold Start 34 s 26s

Acquisition
Sensitivity

-145 dBm -160 dBm

Tracking
sensitivity

-165 dBm -161 dBm

Maximum Velocity 515 m/s 500 m/s

Input Voltage 3.0-5.5 V DC 2.7-3.6 V DC

Load Current 25 mA tracking

20 mA navigation

67 mA

22

After some time analyzing and determining which GPS module would be most
effective for this project, it was decided. The GPS module that will be used for this
project is the Adafruit Ultimate GPS Breakout. The Adafruit Ultimate GPS Breakout
can operate at a maximum input voltage of 5.5V, while the NEO-6M can only
operate at 3.6V max. This allows more flexibility for the voltage regulator when
supplying an input voltage, and would ultimately dissipate less power. Additionally,
the module is NMEA 0183 compliant, has a 9600 baud rate, and is
DGPS/WAAS/EGNOS supported.

3.2.3.3. Sensors
The SmartKart shopping system will employ the use of sensors in order to keep
track of the items in the user’s cart. All items will have an RFID tag embedded in
to them. The RFID sensors will line the perimeter of the shopping cart, so that
when the user adds a new item into their cart, our system will be able to detect
what the item is, its cost, and eventually scan the store’s database to identify any
potentially available coupons associated with that product. The system will also
require the use of ultrasonic sensors in order to detect when an item has been
removed from a user’s cart.

This section will provide an in depth discussion on how RFID systems work, and
compare and contrast two available options that may be implemented in to our
SmartKart system.

a. RFID
RFID systems are used to keep track of specific items. A simple RFID system is
comprised of four components:

 Tag chips/integrated circuits

 Tag antennas

 Reader control/application software

 Reader antenna

In an RFID system, tags are embedded into all items that need to be tracked. The
tags are created from tag chips/integrated circuits that are connected to a tag
antenna. The integrated circuit contains all necessary information about an item,
including its electronic product code, in order to be traced and identified by the
RFID readers.

The electronic product code, which exists inside the memory of the integrated
circuit, is written and stored in the tag chip's memory via an RFID printer. The
electronic product code used is embedded into the integrated circuit as a 96-bit
data string. The initial eight bits of the string are reserved for the header; this
header is used to identify the protocol version. The following twenty-eight bits of

23

the string are used to identify the business that administers the tag’s data. The
following twenty-four bits in the string are designated as an object class; this is
used to identify what type of product it is. The final thirty-six bits of the string are
encoded as an exclusive serial number, used for a specific tag.

The RFID readers are devices connected to the network that utilize antennas to
provide a link between the system’s software and the tags in order to send
necessary data about the items to the system. The RFID reader is capable of
wirelessly communicating with any tags within the antenna’s range, in order to
gather data such as inventory, filter through products, or write to specific tags

PN532 NFC/RFID controller breakout board-v1.6

Figure 7. PN532 NFC/RFID breakout board

The PN532 is a Near Field Communication (NFC) chip, and may be used for a
multitude of tasks, such as read and write to RFID tags, communicate with mobile
devices, and behave like a NFC tag.

Near Field Communication is a set of communication protocols that behaves as
short range Bluetooth would, without any need for authentication. Near Field
Communication allows two devices to establish a wireless communication, so long
as they are within a 4cm distance of one another. NFC can be used for a multitude
of tasks, such as mobile payment systems, keycards, and even social networking.

As this chip can read and write to RFID tags, it may also be utilized for tasks and
projects that require an RFID system.

The technical details of this module, as specified by www.Adafruit.com are as
follows:

 2" x 4.7"

 0.425" thickness

 Utilizes I2C 7-bit address 0x48

24

As sold by the official Adafruit website, this module may be purchased for $39.95

RFID Reader ID-3LA (125 kHz)

Figure 8. ID-3LA Texas Instruments RFID Reader

The ID-3LA is a small reader module that may be used in RFID systems to
communicate with RFID tags. This module utilizes an external antenna, providing
a receiving range of up to 30cm, in order to communicate with and read tags. Data
formats that are supported by the reader include Wiegand26, Magnetic ABA
Track2, and ASCII.

Using the module is straightforward; simply power the module, expose it to a
125kHz card, and the output will be a serial string which contains the unique ID of
the given RFID tag.

The features of this module, as provided by www.sparkfun.com are as follows:

 5V supply

 125kHz read frequency

 EM4001 64-bit RFID tag compatible

 9600bps TTL and RS232 output

 Magnetic stripe emulation output

 100mm read range

As sold by the official Sparkfun website, this module may be purchased for $25.95.

25

b. Ultrasonic Sensor
Ultrasonic sensors work by transmitting high-frequency sound pulses, and
calculating how much time it takes for the echo of these pulses to reflect back.
That time is then used to calculate the distance of an object.

Ultrasonic sensors are capable of measuring the following types of data:

 Distance

 Position

 Level

 Diameter

Ultrasonic sensors may be used for a variety of tasks, such as security systems,
robotic navigation, and winder roll applications.

These sensors typically have two openings; one is used for transmitting the high-
frequency sound pulses, whereas the other opening is used for receiving them.
The following mathematical equation is used for calculating distance:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑇𝑖𝑚𝑒 𝑥 Speed of Sound

2

Where the speed of sound is approximately 340.29
𝑚

𝑠
. This is used, alongside the

total time it takes for the sound pulses to be transmitted and received by the
sensor, to determine the sensor’s distance from an object.

Ultrasonic Sensor HC-SR04
The HC-SR04 ultrasonic sensor can detect within a distance of 2 cm-400 cm. The
module also has a ranging accuracy of up to 0.3 cm. Each HC-SR04 comes
complete with an ultrasonic transmitter, a receiver module, and a control circuit.

The HC-SR04 module contains four pins: VCC, Trig, Echo, and GND. This pins
are used for power, input, output, and ground, respectively.

Technical features, as provided by www.sparkfun.com, include:

 5V DC operating voltage

 15mA operating current

 15° measure angle

 2cm - 4m distance range

As sold by the official Sparkfun website, this module may be purchased for
$3.95.

26

PING))) Ultrasonic Distance Sensor

The PING))) Ultrasonic Distance Sensor is another option to consider for distance
measurement. This ultrasonic distance sensor module contains three pins: VCC,
SIG, and GND. These pins are used for power, input/output, and ground,
respectively.

Key features of this module, as provided by the official Parallax website,
www.parallax.com, include:

 2cm-3m distance range

 Ultrasonic measurements are unaffected by lighting conditions
o May be used as a supplement for infrared object detectors

 Input and output requires a single I/O pin

 Burst indicator LED indicates sensor activity

 No soldering required to connect to a development board

Details of this module, as described by www.parallax.com, include:

 Narrow acceptance angle

 Range: approximately 1 inch to 10 feet (2 cm to 3 m)

 3-pin male header with 0.1" spacing

 Power requirements: +5 VDC; 35 mA active

 Communication: positive TTL pulse

 Dimensions: 0.81 x 1.8 x 0.6 in (22 x 46 x 16 mm)

 Operating temperature range: +32 to +158 °F (0 to +70 °C)

This module can be purchased at www.parallax.com for $29.99.

c. Choice

Upon further research, our team has decided that ultrasonic sensors will not be
necessary for the construction of our project. Our team has chosen to implement
the PN532 NFC/RFID controller breakout board in our system, as it can be used
to easily keep track of what items are being put in to the user’s cart, as well as any
items that are removed by the shopper.

3.2.4. Voltage Regulators
This section will be used to discuss the research our team did while considering
power supply solutions to employ in our SmartKart shopping system. This includes
different types voltage regulators, including Linear Voltage Regulators and
Switching Voltage Regulators.

27

3.2.4.1. Linear Voltage Regulator

Figure 9. Linear Voltage Regulator General Configuration (Texas Instruments)

Linear voltage regulators generally function by using a voltage-controlled current
source to push a constant voltage at the output terminal. The output voltage must
be monitored to ensure it is constant. To achieve this, control circuitry is used to
adjust the current source. The design constraints on the current source can limit
the maximum current the regulator can output to the load. A feedback loop is used
to control the output voltage but requires compensation. An important trait to
consider is the transient response time of a linear voltage regulator after a change
in the current load has been detected.

3.2.4.2. Feedback Control Loop

Figure 10. Linear Voltage Regulator Control Loop (Texas Instruments)

28

Linear voltage regulators typically use a passing device to provide a load current.
In Figure 10, the passing device consists of a NPN Darlington pair that is driven by
a PNP transistor. The current coming from the passing transistor’s emitter junction
provides the current load and flows into the negative end of the error amplifier. R1
and R2 resistors make up a voltage divider to monitor the output voltage. The
positive end of the error amplifier is connected to a reference voltage. The purpose
of this is for the error amplifier to constantly adjust the voltage it is outputting to the
pass device. This will force the voltage on the error amplifier’s negative end to be
equal to the reference voltage.

The control loop provides a constant output voltage, even when the load current
varies. When the load current does vary, the output voltage varies as well. When
this occurs, the control loop begins to adjust to the transient response. The voltage
that appears through R1 and R2 is no longer the same as the reference voltage.
This voltage difference causes the error amplifier to correct the voltage it outputs,
as well as the current that flows into the passing device.

3.2.4.3. Linear Voltage Regulator Types
We will look three types of linear voltage regulator designs. These include the
Standard Regulator, Low Dropout (LDO) Regulator, and the Quasi LDO Regulator.

Among all three of these regulators, an important aspect to consider is the dropout
voltage, which is defined as the minimum voltage drop that can be produced
across the regulator while still being able to maintain output voltage regulation.
Linear voltage regulators with small dropout voltages will dissipate small quantities
of internal power and produce high efficiency. The Standard Regulator typically
produces high dropout voltage, while the LDO Regulator produces low dropout
voltage.

a. Standard Regulator

Figure 11. Standard Linear Voltage Regulator (Texas Instruments)

29

The standard linear voltage regulator in Figure 11 uses a NPN Darlington transistor
pair to provide a constant output voltage. To provide consistent output voltage
regulation, the pass transistor needs to have a minimum voltage across it, which
is given by this equation:

This voltage is typically set around 2.5V to 3V by the manufacturer to clearly detail
performance limitations. The dropout voltage is typically around 1.5V to 2.2V for a
Standard Regulator.

b. Low Dropout (LDO) Regulator

Figure 12. LDO Linear Voltage Regulator (Texas Instruments)

The pass transistor of the LDO Regulator is a PNP transistor, as seen in Figure
12. To maintain consistent output voltage regulation, the LDO Regulator needs to
have a minimum voltage drop, which is given by this equation:

The dropout voltage of the LDO Regulators is considerably lower than the other
linear voltage regulators. This provides low power dissipation and high efficiency.
The maximum dropout voltage is typically around 0.7V to 0.8V at full current. There
is a direct relation between the dropout voltage and the load current.

30

c. Quasi LDO Regulator

Figure 13. Quasi LDO Linear Voltage Regulator (Texas Instruments)

The Quasi LDO Regulator is a variation of the Standard Regulator, and uses a
NPN and PNP transistor, as seen in Figure 13. To provide consistent output
voltage regulation, the pass device needs to have a minimum voltage across it,
which is given by this equation:

The maximum dropout voltage for the Quasi LDO Regulator is typically around
1.5V. The dropout voltage for the Quasi LDO Regulator is exists between the
dropout voltages for the Standard Regulator and the LDO Regulator.

3.2.4.4. Switching Voltage Regulators
Switching voltage regulators are generally more preferred than linear voltage
regulators. Linear voltage regulators are mainly used in small-scale applications
where minimal cost is an important factor. Additionally, linear voltage regulators
are typically only able to operate with a relatively small voltage difference between
the input and output. Linear regulators dissipate a lot of power, which creates lower
efficiency, and heat sink is sometimes needed to prevent the linear regulator from
overheating.

Switching voltage regulators dissipate less power, have higher efficiency, and use
additional techniques such as pulse width modulation and frequency filters to
regulate output voltage.

31

The types of switching voltage regulators that will be discussed are the Buck (step-
down) converter and the Boost (step-up) converter.

a. Buck (Step-down) Converter

Figure 14. Buck Converter General Configuration (Powerelectronics.com)

The buck converter takes in an input voltage and produces an output voltage that
is lower than the input voltage. For example, an input voltage of 8V to 25V can be
converted to an output voltage of 0.5V to 5V. The output voltage is controlled
through a switching technique, which regulates how voltage is received at the
output for a given period. The most common technique to achieve this is pulse
width modulation (PWM). PWM produces a duty cycle, which is the ratio of the
amount of time the switch is on versus the total period time.

Using the input voltage and duty cycle, buck converters regulate the output
voltage. The inductor stores energy as the regulator is switched on, and keeps the
output voltage constant when the regulator is switched off. The capacitor is useful
for minimizing the ripple voltage present. The passing device in the buck converter
is made up of a transistor, typically a MOSFET.

Buck converters can be advantageous because they do not overheat (lower power
dissipation) and can have very high power efficiency. For any electrical application
that requires producing a lower voltage from a high voltage source, typically a buck
converter of some sort is used.

b. Boost (Step-up) Converter
The boost converter functions the same way as the buck converter. Instead of
producing an output voltage that is lower than the input voltage, the boost

32

converter produces a higher output voltage. While the input current is continuous,
the load current is discontinuous due to an output diode. During the switching
cycles in which low voltage (close to 0V) is supplied, an output capacitor provides
the load current. The switching cycles are driven through the PWM switch model.

Figure 15. Boost Converter General Configuration (Texas Instruments)

The switching device is an n-channel MOSFET, as shown in Figure 15. The boost
converter normally operates through the transistor constantly being switched on
and off. The amount of on and off cycles is determined by the drive circuit. When
the output diode is switched on, the inductor and capacitor form a filter which
produces a constant DC voltage from the queue of voltages seen during the switch
cycles.

3.3. Software
This section covers programming languages, frameworks, and web stack choices
that could be used to develop the system. We also review different web hosting
platforms and APIs that would promote the development of a robust modular
system.

3.3.1. Web Stack
A Web Stack is a set of different applications software that are bundled together
to host web applications. Due to the PHP Laravel and Node.js frameworks, we
would either implement a LAMP stack if we use the PHP Laravel framework or a
MEAN stack if we chose Node.js. While the LAMP Stack is platform dependent,
the MEAN Stack is platform independent.

3.3.1.1. LAMP
The LAMP Stack is one of the more popular open source web stacks that performs
basic installation and configuration of the components listed below:

33

 Linux: Unix-based operating system

 Apache: Web server. Will host the API and application.

 PHP: Scripting language designed for web development that can be
embedded in HTML. Code is executed on the server side and outputted to
the client, can return images, files, and multimedia files.

 MySQL: Relational SQL database management system.

3.3.1.2. MEAN
The MEAN Stack is also an open source, and primarily used to build dynamic web
sites and web applications that supports programs written in JavaScript for both
client and server side executable code. The components are:

 MongoDB: a NoSQL database

 Express.js: a web application framework that runs on Node.js.

 Angular.js: a JavaScript MVC framework that run in browser JavaScript
engines

 Node.js: execution environment for event-driven server-side and
networking applications

3.3.2. Framework
Due to the project requirements, the team must build a web application that allows
shoppers and retail stores to interact with the system, via an application and an
API for the shopping carts to communicate with the system. For easy scalability
and debugging, we wish to build the API and web application using either PHP
Laravel Framework or Angular.js using Node.js.

3.3.2.1. PHP Laravel
Initially released in June 2011, Laravel’s creator describes it as a framework for
people who value “elegance, simplicity, and readability.” Laravel allows for
developers to build robust systems without wasting time on routing and
modularizing code, and focus more on debugging and building functional
application features. Laravel offers an alternate called Lumen, for when
developers are looking to build APIs. Though it is possible to build a SOAP API
with Laravel, it may be cumbersome, require additional libraries/configuration, and
many PHP developers disagree with creating a SOAP API and would rather create
a REST API.

For our application, we require multiple libraries and APIs to implement certain
features. Laravel does provide a few libraries/packages that we would need:

 Laravel Cashier: Interface to allow us to communicate with Stripe to
validate, process payments, and return funds to accounts’ credit cards.

34

 Laravel Passport: Handles login authentication, via OAuth2, so users can
navigate the website only signing in once. Also allows for easy set up of
API authentication, since APIs typically use tokens for authentication.

 Laravel Echo: Allows for the system to update a client’s webpage without
having to reload the page. Using WebSockets, the system can post
updates to the user page instead of having the client continuously poll
the server for updates.

 Laravel Mail: Interface to SwiftMailer to easily send and receive emails,
however, we only require this for sending emails to verify accounts and
provide a pdf copy of their receipt.

Additional open source libraries that we require, not provided by Laravel, are:

 Snappy: PHP5 wrapper library to interface with wkhtmltopdf that allows
thumbnail, snapshot and PDF generation. Can generate pdfs from url(s),
webpages, or build the data to store in the pdf. To guarantee all text from
the webpage is rendered in the pdf, the following system-level libraries
will be needed: xfonts-base, xfints-75dpi, and urw-fonts installed.

 Twilio: Voice, Video, Messaging, and Authentication REST API. Would
be used to text user a confirmation of any purchase recently made on
their account.

 Zbar-qrdecoder: PHP wrapper for zbar-tools to decode barcodes and
QRcodes scanned. Supported formats are: Code 39 (encode 43 ASCII
characters); Code 128 (encode 128 ASCII characters); EAN_13 / ISBN
(13 digits).

 DomPDF: This is a backup pdf generator that will be utilized if our team
is unable to setup Snappy. It can only render what is on the screen and
output it to the browser. The only limitation is it can take a while to render
larger files with lots of data.

 Webcamjs: HTML5 Webcam image capture. Will be used to allow users
to see where they are aiming their camera when aiming at barcodes.

Laravel implements the Model-View-Controller design pattern and maps URL
routes to controller actions (unique functions). Although, Laravel provides a
directory for storing Controllers and Views, it is up to the developers to decide
where they would like to store their models. Furthermore, Laravel uses a template
engine, called “blade”, to bind data returned from the database or model to objects
stored in the view, and insert multiple partial-views into a parent-view, allowing
developers to delete redundant code.

For security, Laravel provides additional functionality to assist developers in writing
code that validates and sanitizes user input. Developers can also configure their
project to encrypt any sensitive data, only permit HTTPS connections, and
securely hash passwords/tokens.

35

3.3.2.2. Node.js
Node.js is not a framework, but rather a JavaScript runtime environment built on
Google Chrome’s JavaScript V8 Engine. Developers use Node.JS for applications
that must be fast, event driven, and handle many requests. Unlike other
frameworks, Node.js promotes non-blocking programming to remove buffering and
cutback on CPU and memory resources.

On a high level, Node.js runs the same way as a traditional web server, however,
Node.js runs different under the hood. Normally, when a web server receives a
request to perform an operation it will create a new thread, perform all necessary
operations, return the data, and end the thread. While Node.js runs on a single
event thread that runs any non-blocking operations and passes any I/O blocking
to a thread pool, it is the developer’s responsibility to write asynchronous code by
implementing callback functions to be called once a function finishes running.
Though developers can write blocking functions, all Node APIs support callbacks
and all developers promote implementing callbacks.

Although Node.js is a moderately new framework, there is a vast amount of
documentation and APIs available to effectively implement any system. Using the
NPM package manager, we can install any necessary modules to assist in the
development of the desired system.

For this project, we need to the following modules/libraries:

 Express.js: Light weight Node.js web application framework with
features to support web and mobile applications. Will be used for the
API portion of the system and hosting the web application for customers
to use.

 Express-jwt: Middleware module that validates JsonWebTokens. Used
to protect API endpoints (client & server) instead of just over the ‘wire’,
since it is not possible to implement sessions in APIs. Allows developers
to prevent malicious users from adding products to other shopping carts
without permission.

 Bcrypt.js: module for securely hashing passwords and comparing login
passwords. Allows us to store hashed version of passwords.

 MongoDB driver: Used for creating Schemas/Models component in
MVC and communicate with MongoDB database.

 Passport.js: Flexible middleware module to authenticate login attempts
via username & password, Facebook, Twitter, etc.

 Stripe API: REST API used for validating, storing, and charging account
credit cards. Used to stay compliant with US laws for keeping users’
credit card information secure. It cost 2.9% of transaction, plus 30 cents,
to charge the card, but with GitHub’s student pack, the transaction fees
are waived for the first $1000 processed.

36

 Qrcode-reader: Module to capture QR-code on shopping carts and
decode information, which will request login credentials, if necessary,
and bind the shopping cart to the user.

 Webcamjs: HTML5 Webcam image capture. Will be used to allow users
to see where they are aiming their camera when aiming at barcodes.

 Web-push: module to implement push notifications so app owners can
be alerted without having the app open. Will be used to notify users their
payment was successful, and any other information that seems
important to notify users immediately.

 SendGrid API: API that can send/receive emails for a system with
attachments and real-time event notification WebHooks. Will be used to
send users a copy of their receipt of their recent purchase to their email.
With the GitHub student pack, we can send 15,000 emails a month for
free, however, normal pricing is a minimum of $10 per month, and allows
users to send 40,000 emails.

Figure 16. Node.js Architecture

3.3.2.3. Angular.js
Angular.js is a JavaScript based frontend web application framework maintained
by Google, which is used to develop single-page applications. The goal is to
develop applications that have the similar UI/UX as desktop and native mobile
applications. Angular.js solves the issue of HTML not being designed for dynamic
views, saving processing power for manipulating a page’s Document Object Model
(DOM). The Angular application is built with HTML templates with angular tags,
component classes to manage data being presented in HTML templates, and logic
to handle actions. When the Angular application is launched, the bootloader will

37

inject the necessary Boot Strap classes and tags. The main building blocks in an
Angular application are:

 Modules: Classes that store information of the data that will be presented
on the web page. Initially, the application has only the root module, but
you can always create additional modules for your application. Modules
are defined with the @NgModule.

 Components: Controls a specific view on the screen. In the component
class, you define any component application logic that handles user
interaction, i.e. load the next set of elements in table when next button is
pressed. Throughout an application’s lifecycle it is constantly creating,
updating, and destroying component instances.

 Templates: Defines a component’s view. Although much of the code is
basic HTML, there are tags you can use to bind data or functions to call
in the component to show to the user.

 Metadata: Tells Angular how to process a class, and information of the
page, like dependencies, what template the component binds to, etc.
With properly adding metadata information, you can see improved
performance.

 Data binding: Binds the data from the components to the view, saving
developers lots of time and frustration writing jQuery code to handle user
actions. You can bind elements from the component to multiple elements
in the view with one displaying the data, and another part allowing users
to edit the data. As the users modify the data, its changes to also being
changed throughout the rest of the page.

 Directives: Tags that manipulates the DOM when angular renders the
selected template.

 Services: Broad term to describe any additional features an application
requires. Instead of having components filled with code for fetching data
from cache, databases, and APIs, we store all this logic in services and
call designated functions from the component class. There are many
open-sources services for handling caching and network I/O operations.

 Dependency injection: Solves any dependency issues a newly created
component may have. Most of the time components are dependent on
services. This is done by reviewing constructor parameter types and
looking at the services listed in the provider array. Providers can be
included in modules and components.

38

Figure 17. Angular Application Components

3.3.2.4. Choice
Although some team members have more experience with developing websites in
PHP, we believe it is better if we proceed to build the system with Anguler.js, using
Node.js as the development environment. Although there is a substantial amount
of documentation for PHP and Angular.js, there are many security flaws in PHP
that are nonexistent if we proceeded with Angular.js. We can implement
asynchronous calls in Angular.js which can improve performance, and more APIs
are available for Node.js applications.

3.3.3. API
An Application Programming Interface (API) is a program that other programs can
use to solve smaller problems. For this system, we need a web API that allows
the devices on the shopping cart to communicate with the system to update a
customer’s shopping cart. Two possible solutions are a SOAP and REST API.

3.3.3.1. SOAP
Simple Object Access Protocol (SOAP) is an XML-based messaging protocol to
communicate with another computer via HTTP protocol. A SOAP message
includes the following elements:

 Envelope: A mandatory element that signals the start and end of the
message.

 Header: An optional element that stores data used in processing the
message.

 Body: A mandatory element that contains XML data being sent.

39

 Fault: An optional fault element that provides information about
errors that arose during code execution. Found in the body element
of the SOAP message envelope.

Figure 18. SOAP Example: Request and Response

When implemented with HTTP, developers don’t have to worry about existing
firewall policy being modified to allow post/response exchanges to be dropped.
SOAP also has built in error handling and is language, platform, and transport
protocol independent (SMTP, etc.). However, due to slow parsing speed of XML,
which will require additional resources that are already limited on the device on the
shopping cart, which could affect its functionality.

40

3.3.3.2. REST
Representational state transfer (REST) is a stateless web service that allows easy
messaging where each HTTP verb maps to a unique action. Review the table
below for information for the HTTP verbs and an example.

Table 5. REST API

Uniform Resource
Locator (URL)

HTTP VERBS

GET PUT POST DELETE

http://api.site.com/
books/

List of all
books
recorded

Replace entire
book collection
with new set of
books

Add a new
book into
records.
Data for the
new book is
stored in the
body

Delete
entire
book
collection

http://api.site.com/
books/1232

Retrieve
data about
book that
has the id of
1232

Update
specified
information for
book with id
1232.
Information to
update book is
stored in the
body

Standardly
not used
when
addressing
an object

Delete
the book
with the
id 1232
from the
collection

With a REST API, its common to send data in the body in JSON format, using key
value pairs to represent data. Although REST APIs can easy scale up and not
require time for parsing data, developers must write additional code and require
more data to be sent to authenticate clients when they necessary since REST APIs
don’t implement sessions.

3.3.3.3. Choice
Due to Node.js default implementation of JSON, our API can be stateless, and
resources are important to shopping cart devices and the system we believe that

http://api.site.com/books/1232
http://api.site.com/books/1232

41

a REST API is the best choice. It’s less resource intensive if data being fetched
from a MongoDB collection since the data is JSON formatted, so don’t need
execute extra code to parse JSON formatted data to XML format. Although,
developers won’t spend time checking XML messages are properly formatted, they
will need to write error handling and message code.

3.3.4. Web Sockets
Traditionally clients were required to send requests to the server to receive new
data. Introduced in 2001 the WebSocket protocol allows developers to implement
server-side events, where the server can push new data to client computers at any
moment. Allowing developers to writing AJAX request code to have clients
continuously poll the server, thus greatly diminishing server overhead. The
WebSocket connection begins as the HTTP(S) handshake occurring. Currently,
the WebSocket Protocol is supported my Google Chrome, Firefox, Safari, and
Microsoft Edge. With WebSocket Protocol we can easy design the system to send
new data to client devices whenever the device on the shopping cart detects items
being added/removed from the shopping cart, or push messages to their device to
show confirmation upon successfully connecting to the shopping cart and
completion of checkout.

Due to project requirements, it seems that socket.io is the best WebSocket API for
our project. It works with Express.js and allows implementation over HTTPS.
Above all, socket.io allows the system to send data to single, groups, or all users
currently on connected to the system.

3.3.5. Database
The system being developed will require a database that manages account, store,
product, and coupon information. In this section covers SQL and NoSQL database
systems.

3.3.5.1. SQL (RDMS)
SQL was made in the 1970s and is used by database administrators and developers that
what to setup and run analytical queries. Some popular examples of SQL databases
include MySQL, Postgres, Microsoft SQL, and Oracle. SQL is used for modifying database
tables and index structures. This includes adding and updating rows of data and getting
information from within a database. SQL operations such as queries normally take the
form of commands written as statements, such as select, insert, create, and add.

SQL databases are relational systems that are made up of tables comprising of
data formatted in rows and columns. Each column in the tables relates to a
category of data such as manager or address. While each row contains data about
an individual or thing that the table is keeping track of. So for example who is
John’s manager or what is John’s address. This format is very similar to a
spreadsheet in Excel and is easy for first time users to understand.

42

The scaling for SQL databases is done vertically. That means that in order the deal
with increased traffic in the database a single server needs to become increasingly
more powerful. Although it is not impossible to have a SQL database spread out
over many servers there is usually a substantial amount of extra engineering
necessary in order to do so. Furthermore, many core features such as JOINs,
referential integrity and transactions tend to become lost in the process.

In the schema for a SQL database the structure and data types are setup
beforehand. In addition to store data about a new data item, such as a phone
number, the complete database needs to be changed. This requires the database
to be taken offline which means that the applications will not be able to access
during that time period. This can be very irritating for the users who are trying to
use the application and it might discourage them from using it in the future.
Therefore, it is important that the people who are developing the database to be
fully aware of its function and thoroughly analyses it.

The development model for SQL is a mixture of open source, such as Postgres or
MySQL, and closed source like the Oracle database. SQL has also been
developed for strong consistency which means that although ta person might read
old data from a table when the replication system lags they will never read partial
or inconsistent data. That happens when only part of the data has been changed
that means the user will either get the old data or the new data but never a mixture
of the two.

3.3.5.2. NoSQL
NoSQL was created in the late 2000s because of the limitations of SQL databases.
These limitations include scalability, geo-distribution, and agile development
sprints. Some examples of NoSQL databases include MongoDB, Cassandra, and
HBase.

There are also a variety of different NoSQL databases that overcome this limitation
such as document databases, graph stores key-value stores, and wide-column
stores. Document databases work by pairing a unique key with a complex data
structure called a document. These documents can comprise of various diverse
key-value pairs, key-array pairs, or nested documents. Graph stores are used to
hold information about networks of data. An example of this is a graph of people
and their friendships. An example of Graph stores are Neo4J and Giraph. In Key-
value stores every item in the database is stored as a key with its value. This is the
simplest of all the NoSQL database types and some examples include Riak and
Berkeley DB. Wide-column stores are improved for queries over vast datasets and
store columns of data together. Some examples include Cassandra and HBase.

Compared to SQL databases NoSQL databases has improved scalability and
better performance. Furthermore, NoSQL databases’ data model addresses
several issues that the SQL model fails to address. These issues are as follows:

 Large amounts of swiftly varying structured, semi-structured, and
unstructured data

43

 Agile sprints, rapid schema iteration, and recurrent code pushes

 Flexible and simple to use object-oriented programming

 Geographically distributed scale-out architecture

As stated earlier for SQL databases the schemas must be defined before any data
is added. This works poorly for agile development because each time a new
feature to the product is complete the schema for the database has to be changed.
That means that adding a new column to a SQL database requires the developer
to migrate the whole database to the new schema and if the database is a sizable
one this could take an unreasonably long amount of time. NoSQL databases,
however are made to allow for data to be inserted without a predefined schema.
That means making substantial application changes in real-time without service
interruptions is an easy process. This tends to make development faster and code
integration more reliable.

NoSQL databases tend to support auto-sharing. The databases automatically
spread data across an arbitrary amount of servers without demanding the
application’s awareness of the configuration of servers. The data and query load
are evenly distributed among the servers and if a server goes down it can be swiftly
replaced without application disruption.

Table 6. Database comparisons

 SQL Databases NoSQL Databases

Examples MySQL, Postgres, Microsoft
SQL Server, Oracle Database

MongoDB, Cassandra,
HBase, Neo4j

Data Storage
Model

Records stored as rows in
tables, with each column
storing a specific piece of data
about that record.

Document in JSON, can
store records in nested
records.

Schemas Fixed Dynamic

Scaling Vertically, spread SQL
databases over many servers.

Horizontally, database
automatically spreads data
across servers as
necessary.

44

 SQL Databases NoSQL Databases

Supports
Transactions

Yes, updates can be
configured to complete
entirely or not at all

In certain circumstances
and at certain levels (e.g.,
document level vs. database
level)

Data
Manipulation

Specific language using
Select, Insert, and Update
statements, e.g. SELECT
fields FROM table WHERE…

Through object-oriented
APIs

3.3.6. MVC
Model-View-Controller (MVC) is a software architecture pattern that promotes
efficient code reuse. MVC has 3 components:

 Model: Logic that stores data retrieved from database or other
resources. (What to display)

 View: This is the frontend portion of the system that includes CSS,
HTML, and JavaScript code. This is the component that allows users
to interact with the system to fetch or edit account information. (How
it’s displayed)

 Control: Handles actions for retrieving data, modifying fetched data,
and saving data modified by user. (format model for display)

Figure 19. MVC Diagram

As seen in the diagram, the view should only trigger events, also known as call
functions, in the controller. The controller then performs the desired user actions
after making sure the user is authorized to perform specified actions. In cases
where users are adding or modifying data, and the model isn’t returning any data,
it is good coding standard to return feedback if the changes made were successful.

A controller can return a view when redirecting to a page, model when reloading a
page, or additional data on an object or a list. In practice, it is best to load a View
with an empty model, then fetch the data requested to decrease load time and
improve memory efficiency.

45

3.3.7. Applications
For a project we require an interface that allows customers to easy interact with
the system to view previous purchases, available coupons, and a running total of
their shopping cart. We are focusing on the Android Platform since a majority of
the group has an android phone, and a team member has previous experience
developing Android apps. We are looking at developing either a native Android
application or a Progressive Web App for users to interact with the system.

3.3.7.1. Android App
Since Android’s initial release September 23, 2008, Google has developed a
mobile operating system that incorporates security and easy usability, adding
additional features every release. From the diagram, we can see that many people
are still using previous releases of Android. Thus, we would have to design the
app to be able to run on Lollipop and Marshmallow.

Figure 20. Device population

a. Native Android App
In an Android application, there are four essential types of components, each with
a different entry point which the system or user can enter the app, serves a distinct
purpose, and has a unique lifecycle. The four app components are:

 Activities: The entry point for interacting with the user that holds the logic
for a single screen view and lifecycle. Activities can communicate with
other activities in an application to present cohesive user experience,
they can also be designed to allow other apps on the phone to start a
given activity.

 Services: A general purpose entry point to keep the app running in the
background or perform certain operations in the background instead of
the main thread. Services are used when apps must communicate over

46

the network to fetch/upload data to a server, or listen to a song from
music app while playing a game on another app. There are Started
Services that tell the system to continue running the service in the
background until its done. A Bound Service allows for other applications
to use it, so the system knows that there is a dependency between
applications if App-A called a service in App-B, so it knows it must keep
App-B running for App-A.

 Content providers: Manages a shared set of app data that can be stored
on the web or persistent local storage that the app can access. They
allow apps to share data securely, by allowing them to initiate intents to
a specific app or any app that meets the requirements. However,
applications don’t have the permissions to directly active a component
from another app, so they must message the system with the intent
saying to start a component.

 Broadcast receivers: Enables the app to respond to system-wide
broadcast announcements. Although most broadcast originate from the
system notifying apps about device information, other apps can also
broadcast to other apps notifying them data is available for other apps
to use. Any request made is received in an Intent object.

Using the Manifest.xml file, developers must define the components, permissions,
and dependencies required to run the application.

b. Cordova
Apache Cordova is an open-source mobile development framework that allows
web developers to write applications that can be ran on various platforms using
(HTML), Cascading Style Sheet (CSS), and JavaScript. The application will
execute in a designated wrapper and rely on the standards-compliant API bindings
to access the device’s sensors, data, network, etc. Cordova is for projects where
developers want to extend their application across multiple platforms without
spending countless hours rewriting code in each platform’s language.

47

Figure 21. Cordova Application Architecture

Seen in the above diagram, there are three components to a Cordova Application:

 WebView: Handles how application will be presented, developers can
also embed Cordova WebViews in native hybrid application components
on some platforms.

 Web App: Where all the code for the application resides, there is a
default index.html file that references CSS and JavaScript and other
resources necessary to run. The config.xml is a crucial file that provides
information about the app and parameters that affect how the app runs.

Plugins: Provide an interface for Cordova and native components to communicate
with one another allowing the app to invoke native code from JavaScript. Cordova
provides a core set of plugins to interact with the devices, battery, camera,
contacts, and more, but we can also include other plugins to abstract any additional
native code required to communicate with the device’s components.

c. Progressive Web Application
In late 2015 Alex Russell a Google Chrome engineer and designer Frances
Berriman defined the concept of a Progressive Web App as an application that
takes advantage of features offered modern browsers that function like a native
application. A successful Progressive Web App must be:

 Reliable: Regardless of network conditions the application must load
instantly or perceive to look like its loading. Written in JavaScript,

48

service workers solve this issue and put the developer in control of
the cache and how to respond to resource requests. This allows
users to access the application if they are offline. Because service
workers can hijack connections and fabricate responses, you can
only use service workers on pages served over HTTPS so we know
the service worker the client device receives hasn’t been tampered.

 Fast: The app must quickly respond to user interaction and smoothly
transition to other pages within 2 seconds, users should never see a
white screen. We can optimize how code is delivered to clients to
improve delivery time and rendering performance. Using service
workers and App Shells, we can give the illusion of performance by
loading the template with data from the cache while we wait for a
network response with the data we queued instead of a white page.
Every time data is fetched from a server we should always save that
data in the cache.

 Engaging: Users can install the app, which will live on the home
screen, without the need for accessing the app store. The Manifest
file defines the app icon on the home screen and how the app will
render full screen without showing the address bar.

Figure 22. PWA Shell App

3.3.7.2. Choice
While some group members have experience developing native Android
applications with Java, we are deciding to build the application as a Progressive
Web App. Unlike an application built with Cordova, a Progressive Web App
doesn’t require additional libraries to communicate with the device since we are
running in the Chrome browser and using their APIs to communicate with the
device, allowing our application to be platform independent without having to
include additional libraries which could affect the application's performance.

3.3.8. Web Service Provider
This section will be used to discuss the different options for Web Service Providers
that our team considered to employ in our SmartKart shopping system. This

49

includes an in-depth discussion on Amazon Web Services and Google Cloud
Platform.

3.3.8.1. Amazon
Amazon Web Services is a cloud computing platform created by Amazon.com. It
originally offered online services for websites and client-side application. Now,
Amazon Web Services offers over three dozen services, including CloudDrive,
Dynamo Database, Elastic Compute Cloud, and more. All of their services are
billed according to how much it is used, although the rates vary from service to
service.

A cloud service platform such as Amazon Web Services provides rapid access to
IT resources. Furthermore, with cloud computing there is no expensive upfront
investment in hardware, and there is no time needed to manage the hardware.
Instead, there is only a need to pay for what computing resources are being
utilized. Amazon Web Services, as well as other providers, may have higher
economies of scale, which means there can be lower prices for their users.

Amazon Web Services allows the user to pick whatever platform they want. It also
provides a software development kit for the more popular platforms, such as Java
and Node.js. Furthermore, Amazon Web Services has no restrictions on which
content management system is used for hosting the website; it may be anything
from WordPress to Drupal.

Amazon Web Services provides an elastic cloud computing infrastructure, which
allows for the website to grow or shrink based on the amount of traffic that a
website is receiving. There are also many datacenters around the world which
allow Amazon Web Services' customers to host their website globally within
minutes.

Amazon also provides Amazon CloudFront, which is a content delivery network. It
can be used to deliver the entire website using a global network of edge locations.
The requests for website content are routed to the closest edge location so the
content is delivered as quickly as possible. Amazon Web Services also provides a
"Trusted Advisor" to give the user automated analysis and recommendations for
the website.

Amazon Web Services offers a "Free Tier", which allows its users to obtain free
hands-on experience with the Amazon Web Services platform and services. These
free services include, but are not limited to:

 One million requests per month using Amazon Web Services
Lambda: This is a compute service that will run the code in response
to events. It will also automatically manage the compute resources

50

 25 GB of storage in DynamoDB: A NoSQL database[c1]

 20,000 free requests per month of Amazon Web Services' Key
Management Service: This service provides encryption with
administrative controls 250 device minutes from Amazon Web
Services' Device Farm so the users can test their iOS, Android, and
FireOS apps on real devices in the Amazon Web Services cloud.

DynomoDB is Amazon’s NoSQL database service. DynamoDB contains features
such as document data model support. So the user can store, query, and update
documents and by using AWS SDK the user can write applications that store JSON
documents directly into the DynamoDB tables they have setup. This reduces the
amount of new code needed to be written to insert or update a JSON document.

DynamoDB also provides its users with key-value data model support. With this
each row is a key value pair where the primary key is the only requisite attribute
for the rows in a table. Since DynamoDB is schema-less each item or row can
have a limitless amount of attributes. Using Global Secondary Indexes and Local
Secondary Indexes the user can query non-primary key attributes.

DynamoDB has continuous throughput and storage scaling with API and the AWS
Management Console. So the amount of throughput or storage that the user can
use is limitless. Furthermore DynamoDB is equipped with automatic and
synchronous data replication in a total of three facilities in a Region. Therefore the
user’s data is protected against any individual or facility level machine failures.

DynamoDB has a downloadable version so that the user can develop and test their
code on their machine beforehand. Later DynamoDB is able to scale the
application on the cloud for global use.

With DynamoDB the user can use secondary indexes that they create to efficiently
search any attribute. The user can of course delete and add these indexed for their
table at any time. Moreover DynamoDB Streams allows the user to keep track of
the latest item level change. In addition the user can receive all the item level
updates that has taken place in the last 24 hours.

DynamoDB supports cross-region replication across the AWS regions. This allows
users to build globally distributed applications with faster data access, improved
traffic management, simpler disaster recovery, and easy data migration.
DynamoDB has been integrated with AWS Lambda to deliver Triggers to the user.
With Triggers the user can automatically execute a custom function when item
level changes are detected in a table.

DynamoDB has also been combined with Titan to give the user the ability to
proficiently store and traverse graphs regardless of their size. The graph

51

databases are optimized for quick travels of a verity of relationships. Unlike many
NoSQL databases DynamoDB development process is simpler by allowing the
user use strong consistency on reads so that they get the latest values from the
database.

DynamoDB uses established cryptographic methods to authenticate users and
prevent unauthorized access to data. DynamoDB is also incorporates AWS
Identity and Access Management for access control for users within the user’s
organization.

Amazon’s Relational Database Service, or RDS, is Amazon’s SQL database
service. Amazon’s RDS provides the user with several familiar database engines
to choose from. Some of these include Amazon Aurora, MySQL, Oracle, and
PostgreSQL. Meaning that the code, applications and other items that the users
already uses with their current database can be used with Amazon’s RDS.
Amazon’s RDS can handle everyday database tasks like provisioning, patching,
backup, recovery, failure detection, and repair.

Amazon’s RDS is simple to use because it allows the user to use the AWS
Management Console, the Amazon RDS Command Line Interface, or API calls to
access the abilities of a production-ready relational database. Amazon’s RDS
instances are also pre-configured with parameters and settings suitable for the
engine and class that the user has selected.

At no additional charge Amazon’s RDS provides its users with Amazon
CloudWatch metrics for their database instances. They can use it to view metrics
such as I/O activity and compute/memory/storage capacity utilization. Furthermore
Amazon’s RDS provides the user with Enhanced Monitoring which gives them
access to over 50 CPU, memory, file system, and disk I/O metrics. Another feature
that Amazon’s RDS provides its users is automatic software patching. This
ensures that the user’s relational database software stays up-to-date. The user
can employ optional control over when and if their database instance is patched.

Amazon’s RDS has easy storage scaling. The user will be able to setting up
additional storage for when their storage requirements grow. The Amazon Aurora
automatically grows the size of the user’s database volume as needed. The engine
will continue to do this until it reaches 64TB or a maximum the user sets. MySQL,
MariaDB, Oracle, and PostgreSQL allows the user to provision up to 6TB of
storage on-the-fly with zero time lost.

Amazon’s RDS has an automated backup feature that is turned on by default. This
allows for a poit-in-time recovery of a user’s database, should anything happen to
it. Amazon’s RDS backs up the user’s database and transaction logs. These are

52

then stored for a holding period specified by the user. The automatic backup
retention period can be configured to up to 35 days.

Amazon’s RDS also has a database snapshots feature. The database snapshots
are user-initiated backups of the user’s instance that are stored in Amazon S3.
These snapshots are then kept in safekeeping until the user explicitly deletes them.
Users can create new instances whenever they want using a database snapshot.
Database snapshots function operationally as full backups however the users will
only be billed for the storage used.

Amazon Web Services’ IoT is a platform that allows the users to connect devices
to other AWS Services and other devices. It also provides the user with secure
data and interactions, process and act upon device data, and permits applications
to interact with devices even while they are offline.

AWS IoT has a software development kit, known as SDK, to help the user rapidly
connect their hardware device or mobile application. Using MQTT, HTTP, or Web
Sockets protocols, the SDK also allows the users device to authenticate and
exchange messages with IoT. The SDK supports the use of C, JavaScript, and
Arduino. It also includes the client libraries, developer guide, and porting guide for
manufactures. However if the user prefers they can use an open source SDK of
their choosing as well as write their own SDK.

Device Gateway is also a feature with AWS IoT. This allows for devices to securely
and efficiently communicate with the IoT Using a publication/subscription model,
the Device Gateway can exchange messages this allows for both one-to-one and
one-to-many communications. AWS IoT one-to-many communication sequence
allows for a connected device to transmit data to multiple subscribers.The Device
Gateway supports protocols from MQTT, WebSockets, and HTTP 1.1 and it is also
simplistic for the user to implement support for proprietary/legacy protocols.

In order to insure that data is never swapped between devices and AWS IoT
without proven identity IoT has mutual authentication and encryption at all points
of connection. The AWS method of authentication, known as SigV4, as well as
X.509 certificate based authentication is supported by AWS IoT. Both of these
methods can be used if the connection is using HTTP however if the connection is
using MQTT only use certificate based authentication and connections using
WebSockets uses SigV4. Users can utilize AWS IoT generated certificates and
also certificates signed by their preferred Certification Authority. The users are also
able to map their choice of role and policies to each certificate. Therefore users
can authorize devices or applications to have access. Furthermore users can also
revoke access without ever touching the device.

53

Amazon Web Services’ Lambda is a serverless compute service. It runs the user’s
code in reaction to events and manages the core compute resources
automatically. AWS Lambda can extend other AWS services such as Amazon
DynamoDB or Amazon S3. AWS Lambda can run code to respond to multiple
events like buckets or table updates in Amazon DynamoDB automatically. The
code is run on a high-availability compute infrastructure and performs all the
administration concerning the compute resources, code patch deployment,
security patch deployment, code monitoring, code logging, as well as capacity
provisioning and automatic scaling for the user.

Figure 23: Example of System running on AWS

As previously mentioned AWS Lambda can extend other AWS Services. AWS
Lambda does this by allowing the user to add custom logic to AWS resources like
Amazon DynamoDB tables. This makes it simple to apply compute to data as it
enters and moves around the cloud.

To start implementing Lambda the user first needs to either upload their code or
write it directly into the Lambda console. Then the user just needs to select the
memory, timeout period, and AWS Identity and Access Management role. After
that the user only needs to specify the AWS resource to trigger the function, for
example the resource could be a DynamoDB table. Once the resource, in this case
the table, changes Lambda will run the user's function as well as launch and

54

manage the compute resources as needed in order to stay on top of incoming
requests.

Amazon Web Services also provides Cloud Security to its users. Amazon Web
Services’ data center and network architecture has been built to meet the
requirements of some of the most security-sensitive organizations. AWS cloud also
allows users to scale and innovate, while keeping a secure environment. Users
only pay for the security services that they use so that mean that users will tend to
have a lower cost and no big upfront expenses as they would have if they used an
on premise environment.

In infrastructure security AWS provides its users with numerous security
capabilities and services to increase privacy and to control network access. One
of these is the network firewalls that are built into Amazon VPC. There are also
web application firewall abilities in AWS WAF. This allows the user to create private
networks and control access to their products. There is also encryption in transit
with TLS throughout all of AWS’s services. The user also has several connectivity
selections that permit private or even dedicated connections from their office or on
premise environment.

AWS has built all their services and technologies from the ground up for resilience
against DDoS attacks. The grouping of AWS services can be used to implement
defense strategies and hinder any DDoS attacks. The AWS services designed with
automatic response to DDoS attacks help reduce the time to mitigate and
diminishes the impact.

AWS gives the user the capability to add a layer of security to their data by
providing them with scalable and effective encryption features. Some of these
encryption features are as follows:

● Data encryption abilities accessible in AWS storage and database
services like Oracle RDS.

● Flexible key management options that allow the user to choose to
have AWS manage the encryption keys or to control the keys
themself.

● Hardware-based cryptographic key storage using AWS CloudHSM

AWS also has APIs that allow the user to incorporate encryption and data
protection with any of the services they create or use in an AWS environment.

AWS also has tools that allow their users to see what is happening in their AWS
environment. There is visibility into APL calls through an AWS service called
CloudTrail that contains details such as who, what, and from where calls were

55

made. Furthermore, there is log accumulation options that simplify investigations
and compliance reporting. Amazon CloudWatch alerts the user when particular
events transpire or thresholds are surpassed. All these tools and features provide
the user the visibility needed to foresee issues before they arise and impact the
business. It also gives the user the chance to improve their security standing and
reduce their risk profile.

Amazon Web Services also has services that offer security measures for identity
and access control. One of these services is creatively named AWS Identity and
Access Management also known as IAM. With IAM the user can define individual
user accounts with permissions throughout AWS resources. AWS also has AWS
Multi-Factor Authentication for restricted accounts, this even includes selections
for hardware-based authenticators. There is also AWS Directory Service that
allows the user to incorporate and merge with corporate directories to minimize
administrative overhead which in the end improves the user-end experience.

3.3.8.2. Google
Google also offers a cloud computing platform called "Google Cloud Platform."
Like Amazon Web Services, Google also allows the user to use their preferred
programming language. The platform has a wide assortment of services for
compute, storage, and app development. The Google Cloud Platform's main
services include the following:

● Google Compute Engine: A service for users with virtual machines for
workload hosting

● Google App Engine: This service offers software developers access to
Google's scalable hosting. Furthermore, the developers can use an SDK to
make products that run on App Engine.

● Google Cloud Storage: Designed for storing large, unstructured datasets.
There are also database storage options.

● Google Container Engine: A management system for Docker containers.
Google Cloud offers a free tier platform so the users can access Google
Cloud for free on a trial basis. The trial has two parts: the first is a 12-month
free trial with a $300 credit, and the second is Always Free. In the first part
of the trial, the user has a $300 credit that they may spend on Google Cloud
for 12-months.

During the first part of the trial, the user has access to the tools from the Always
Free trial, as well as all the Google Cloud Platform products, with some limitations.
There are limitations on the Google Compute Engine where the user can not have
more than eight cores or eight Virtual CPUs running simultaneously. There are
also some restricted actions on the free trial, such as not being able to use Google
Cloud Platform services to engage in mining cryptocurrency. The trial ends when

56

the user has spent the $300 credit or if the 12-month period has ended, whichever
is met sooner.

Once the trial is finished, the account will be put on hold, and the data and
resources that were made during the trial will remain available for an additional 30
days. After the 30-day period, the data and resources that were made will be
removed, even if the user upgrades later on. The user has a billing account that is
similar to a payment profile, which includes the payment method. Users can create
more than one billing account, and the billing accounts are attached to projects;
this allows the user to pick which accounts the projects get charged to.

The Google Cloud Platform has several tools to help the user estimate the cost,
including:

● Pricing calculator: Used to estimate the user's monthly charges
● Product Pricing: Contains details about the cost of using Google Cloud

Platform Products
● Cost-comparison calculator: allows the user to calculate the potential

savings between other web services, such as Amazon Web Services and
Google Cloud

For the Always Free trial, the user must not have a custom contract or rate card
with Google, have an upgraded billing account, and the user must be in good
standing. An upgraded billing account is a billing account that receives automatic
charges for any usage beyond any credit to the user's account. Always Free allows
the user to try participating products for free up to their non-expiring usage limits.
These participating products are Google Compute Engine, Google Cloud Storage,
and Google Cloud Pub/Sub.

Google App Engine allows users to build scalable web and mobile backends in
any of their language of their choosing on the Google infrastructure. App Engine
uses an open cloud platform to help the user build state of the art web and mobile
applications. This setup allows the user to bring their own frameworks and libraries.
Because Google App Engine abstracts away the infrastructure the user can focus
primarily on coding.

Some of the primary languages that Google App Engine supports is Node.js, Java,
and C#. Programmers that are accustomed to these languages will be instantly
productive in the acclimate environment. An alternative to proprietary tools Google
App Engine allows users to use their own Docker image or custom software stack.
Users can also deploy their application to a container-based system such as
Kubernetes or in the cloud, whether it be public or private.

As stated earlier Google App Engine will manage all infrastructure concerns for the
user such as scaling their app, handling up or down traffic, load balancing, and
applying needed updates to the underlying OS. This is Google’s attempt to help
the user focus on their code and creating their web and mobile app. However, if

57

users can still control their infrastructure as needed. Users can SSH straight into
their instances to deploy their custom code, or manage containers. Users can also
integrate the Google App Engine into their DevOps process. If the user identifies
their app’s CPU and memory requirements Google App Engine will routinely
provision the infrastructure on the user’s behalf.

Google Cloud Storage is a scalable object storage service that is able to deal with
all different types of unstructured data. The user is provided with robust,
accessible, safe and cost-efficient object storage that is able to deal with several
types of workloads. Users can use three different storage choices within one API.
Each of these options has been optimized for different use cases for example
batch data analytics or backup and disaster recovery.

Cloud SQL is a fully-managed database service hosted on Google Cloud Platform.
It is simple for the user to setup, maintain, manage, and administer their MySQL
and PostgreSQL databases in the cloud. Cloud SQL gives the user high
performance, scalability, and convenience. If the user doesn’t wish to use a SQL
database, they are able to use Cloud Bigtable. Cloud Bigtable is an immensely
scalable NoSQL database that is ideal for low-latency and high-throughput
workloads. It integrates with common Big Data tools such as Hadoop and Spark
with ease and it also supports HBase API. Cloud Bigtable is an excellent choice
for operational and analytical application.

Google Cloud Platform also offers Persistent Disk. It is a high-performance block
storage service that is perfect for both Virtual Machines and container storage. The
user only pays for the storage that they use and never pay for provisioned IOPS.
Persistent Disk also has multi-reader mounts and on-demand volume resizing.
This is meant to simplify operations for the user.

Google designs and builds their data centers ensuring the incorporation of multiple
layers of physical security protections. Only a small number of Google employees
have access to these data centers and they use security measures such as
biometric identification, cameras, and laser-based intrusion detection systems.
Google also hosts servers at third-party data centers however they make certain
that there are Google-controlled physical security measures in place on top of the
layers already in place at the data center. Both the server boards and the
networking equipment ant the Google data centers are custom-designed by
Google and they include a special hardware security chip. With the chip Google
can identify and validate genuine Google devices at the hardware level. At the
hardware level Google also has secure boot stack and machine identity.

Services are deployed securely through Google’s infrastructure because their
infrastructure doesn’t assume any trust among services running on the
infrastructure. The first way it does this is by using cryptographic authentication
and authorization at the application layer when dealing with inter-service
communication. To prevent IP spoofing Google doesn’t rely on internal network
segmentation or firewalling as main security methods instead they use ingress and
egress filtering at several locations in their network.

58

All services are provided with unique cryptographic credentials that it is able to use
to prove its identity when sending or receiving remote procedure calls to other
services. Furthermore, the infrastructure provides users with access management
features that allow them to state which other services their service can
communicate with. For access management of end user data the infrastructure
provides a central user identity service. This service issues the user’s client device
a user credential or “end user permission ticket”. After the user credential has been
issued every request from the device into Google requires the device to present
that user credential.

Figure 24: Example of Google Security Services

Google’s infrastructure provides different storage services to the user such as
BigTable and it is important that these services remain secure. Storage services
such as BigTable can be configured by the user to use keys from the central key
management service to encrypt data before it is written into physical storage. The
key management service does the following:

 Supports automatic key rotation

 Provides extensive audit logs

 Integrates with the end user permission tickets

Google also has hardware encryption support in their hard drives and SSDs
enabled. When deleting data Google first marks the item as “scheduled for
deletion” in order to recover anything that was deleted by mistake. Then if it was

59

not a mistake Google will delete the data in accordance to the service-specific
policies.

3.3.8.3. Choice
Although Google and Amazon offer similar features like NoSQL databases, file storage,
extensive data logging, security configuration and dynamic resource allocation. Upon
reviewing the documentation sites, it seems the API references and documentation for
AWS is easier to comprehend and follow with their vast amount of tutorials. Furthermore,
AWS provides lambda functions that allow developers to write programs that can be run
on separate computers instead of using resources on hosting server. AWS also provides
a student account that will cover a majority of the expenses. As a result, we believe
Amazon’s AWS is the better option for our group for hosting our application.

60

4. Related Standards and Design Constraints
Section 4 discusses the related standards and design constraints applicable to
our SmartKart shopping system.

4.1. Standards
This section includes a discussion on different standards our team considered
while designing our system. These include PCI DSS, Wi-Fi, battery and
programming standards, as well as version control.

4.1.1. PCI (Process Credit Card Info)
Any software application involved in processing, or storing credit card data it must
comply the Payment Card Industry Data Security Standards (PCI DSS). It is
crucial that any cardholder data is secure or else if a hacker can dump accounts
credit card information users can lose trust in the company and possible cause the
company to close. With the Primary Account Number (PAN) and any other
authentication data a hacker can steal a cardholder’s identity. If a system must
store cardholder it should never store the Customer Identification Number (CIN), a
unique number for each credit card, or anything on the back of the credit card.

Figure 25. Payment Card Data

The standard is to not store any cardholder data on your system, protect private
networks, protect data storage and transmission. Using Stripe, a PCI Service
Provider Level 1 certified organization, allows us to build an application that is PCI-
compliant by serving any page that handles payments with the HTTPS protocol,
using Transport Layer Security (TLS) for encryption. TLS reduces the risk of
customers being the victim of man-in-the-middle attacks by performing peer-2-
peer encryption and verification between the client and server. To setup TLS one
must acquire a digital certificate from a certification authority which says that the
site is he actual site.

61

4.1.2. Wi-Fi Standards
IEEE 802 is a wireless standard, comprised of several subparts, including IEEE
802.3 Ethernet, IEEE 802.11 Wi-Fi, and IEEE 802.15 Bluetooth. These standards
cover specifications for the physical layer and data-link features of networking for
different technology devices. This section will focus on the 802.11 family of
standards.

4.1.2.1. IEEE 802.11
The IEEE 802.11 standard was formed in 1997; this marked the beginning of the
first WLAN standard. This standard supports a maximum bandwidth of 2 Mbps;
this is too slow for a majority of applications, and thus, 802.11 products have
ceased manufacturing. Since this standard, several amendments have been made
to 802.11, including 802.11a, b, g, n, and ac. Any product or device that
implements a standard from the 802.11 family is required to pass a set of tests in
order to be considered “Wi-Fi certified.”

4.1.2.2. IEEE 802.11b
The original IEEE 802.11 standard was expanded in 1999, with the 802.11b
edition. This specification supports a maximum bandwidth of 11 Mbps. It utilizes
the same 2.4 GHz radio signaling frequency that the original standard does. This
specification may run into interference with other devices that utilize the
unregulated 2.4 GHz range, such as cordless phones and microwave ovens.
However, this issue may be avoided by keeping these appliances a suitable
distance away from one another.

The advantages of standard 802.11b is that it is low cost, and the signal range is
not easily congested. The disadvantages of IEEE 802.11b is that it is slow, and its
unregulated 2.4 GHz range may be interfered with.

4.1.2.3. IEEE 802.11a
Another extension of the 802.11 standard was created; IEEE 802.11a. This
specification is typically used in business networks, as opposed to 802.11b which
is traditionally used in home networks. IEEE 802.11a supports a maximum
bandwidth of 54 Mbps, and it utilizes a 5 GHz radio signaling frequency. This
frequency causes signals of the 802.11a speciation to have difficulty penetrating
obstructions, such as walls.

The advantages of IEEE 802.11a include that it is fast, and it has regulated
frequencies; this prevents interference issues from other applications. The
disadvantages of this specification are that it is high cost, and it has a short range
signal that is easily congested.

62

4.1.2.4. IEEE 802.11g
Another standard implemented was IEEE 802.11g, which was released in 2003.
IEEE 802.11g was created with the idea of combining the advantages of 802.11a
and 802.11b into a single standard.

IEEE 802.11g supports a maximum bandwidth of 54 Mbps, and it utilizes a 2.4
GHz radio signaling frequency. This specification is compatible with IEEE 802.11b,
and as such, the access points of both standards are compatible with the wireless
network adapters of each other.

The advantages of IEEE 802.11g is that it is fast, and has a signal rage that is not
easily congested. The disadvantages of 802.11g is that it is more expensive than
802.11b, and that its unregulated 2.4 GHz signal frequency range may be
interfered with.

4.1.2.5. IEEE 802.11n
The IEEE 802.11n specification was created in 2009 to improve the 802.11g
standard. It did this by increasing the amount of bandwidth support by using MIMO
technology.

Multiple Input, Multiple Output, or MIMO, is a type of technology that utilizes
antennas for wireless communication. The antennas are found at both the source
and destination, or the transmitter and receiver, and are used to optimize data
transmission rates and minimize errors.

The 802.11n standard supports a network bandwidth of up to 300 Mbps, and offers
an improved range in comparison to earlier standards. This standard is also
compatible with 802.11b and 802.11g devices.

The advantages of IEEE 802.11n is that it has the quickest speed and the most
optimizes signal range. It is also better suited for protecting against signal
interferences from other devices. The disadvantages of this specification is that it
has not yet been finalized, and it is expensive, more so than IEEE 802.11g. This
specification may also produce signal interference with other 802.11b and 802.11g
networks nearby.

4.1.2.6. IEEE 802.11ac
The IEEE 802.11ac specification is the most recent edition of the original 802.11
standard. This standard can support connections for both the 2.4 GHz and 5 GHz
signal frequency ranges through use of dual-band wireless routers. IEEE 802.11ac
supports a maximum bandwidth of 450 Mbps for the 2.4 GHz range, and up to

63

1300 Mbps for the 5 Ghz range. The IEEE 802.11ac standard is also compatible
with the 802.11b, 802.11g, and 802.11n editions.

4.1.2.7. Comparison
The following table lists the comparisons between the 802.11 family, including
release date, band, bandwidth, and maximum data rates.

Table 7: IEEE 802.11 Standards Comparison Chart
Standard Release

Date
Band Bandwidth Maximum

data rate

802.11 1997 2.4 GHz 20 MHz 2 Mbps

802.11b 1999 2.4 GHz 20 MHz 11 Mbps

802.11a 1999 5 GHz 20 MHz 54 Mbps

802.11g 2003 2.4 GHz 20 MHz 54 Mbps

802.11n 2009 2.4 GHz,
5 GHz

20,40 MHz 600 Mbps

802.11ac 2013 2.4 GHz,
5 GHz

40,80,160
MHz

6.93 Gbps

4.1.3. Security Standards
As seen in the news, security breaches in a company’s system can wreak havoc
on their business, in some cases forcing them to close. The Open Web Application
Security Project (OWASP) organization releases a document covering the top 10
web application security risks, the most common attack vectors are Cross Site
Scripting (XSS), Cross Site Request Forgery (CSRF), SQL/NoSQL Injections,
security misconfiguration, and expose sensitive data.

A Cross Site Scripting occurs when malicious users inject malicious code into
trusted sites via user input and the system doesn’t validate or escape the data
received. Whenever a user visits the website their browser will execute any script
it receives from the server, allowing the malicious script to have access to cookies,
session tokens, and other sensitive information the browser has access to, and
manipulate pages being rendered. OWASP suggests web sites should never
insert untrusted data to the DOM, if we must escape the untrusted data before

64

inserting it to the DOM, and escape URL before inserting untrusted data into URL
parameter values.

Cross Site Request Forgery is an attack that tries to get the victim user to execute
unwanted actions on a web application that they are currently logged into so it can
inherit the identity of the victim. Although this take isn’t designed to steel user
information it can cause victims with normal accounts to perform undesired
requests like transfer funds change account setting, but if the victim has an
administrative account the hacker can compromise the system. General CSRF
defense involves verifying source origin and target origin in headers and use CSRF
tokens that’s value change whenever a state changing operation is made.

SQL Injections occur when data from the user isn’t not escaped or washed of
special characters that can modify the query statements. The goal is to perform
CRUD operations on sensitive information in the database that they don’t have
authorization to. For instance, if we had a proc that returned all account
information for a given account when we prove the `account_id` a hacker could
send a string for `account_id` that returns more than their account information.

SELECT * FROM accounts WHERE id = account_id;

If the hacker sets account_id to “1’ or ‘1’=’1” then the query becomes

SELECT * FROM accounts WHERE id = ‘1’ or ‘1’=’1’;

Then regardless if there isn’t any account id equal to 1 since the where clause will
always return true due to the ‘1’=’1’, allowing a hacker to get all information in the
accounts table. With simple tweaks to the string that allowed us to dump
everything in the account table hackers can append additional SQL statements to
execute.

Another one of OWASP’s top 10 security risks is security misconfiguration.
Although a system securely validates and transmits data, it means nothing if
developers didn’t properly implement standard security policies on their servers.
Common scenarios include:

 Remove guest accounts and not changing default admin passwords

 Not updating firmware and software

 Not disabling directory listing

 Displaying stack traces of error that occurs to the end users

 Disabling unnecessary ports

 Setup default drop rule on firewalls

65

 Properly log all actions on network and whenever throw an exception on
servers

4.1.4. Battery Standards
IEEE Std 1187-2002 is a recommended standard for valve-regulated lead-acid
(VRLA) batteries. It provides some insight into proper design practices, and
procedures for storing, mounting, venting, and assembling VLRA batteries. It also
discusses some safety practices, and has useful information for float-service
stationary applications.

The standard first covers general safety. It states that VLRA batteries can pose a
hazard to users, as any battery can. In order to properly handle and install VRLA
batteries, certain precautions must be made known. Any work associated with
VRLA batteries shall only be handled by those with that are knowledgeable of
VRLA batteries, have proper training, tools, and protective gear. Before any task
involving VRLA batteries is initiated, hazard analysis shall be conducted. It is
recommended that the potential hazards associated with the task be made known
and discussed with everyone, and should include the importance of protective
gear. Significant hazards listed are an overheated battery, electric shock, electrical
arc, and toxic chemical leaks, and improper carriage and handling of a VRLA
battery. The associated VLRA battery’s datasheet shall be perused by those
working with the battery. The datasheet should have relevant information on
hazards and first aid. Analysis for arc flash prevention shall be done during the
beginning phases of design and installation. Any information that is relevant to any
potential risks needs to be documented and made available with the battery’s
installation.

The document goes on to discuss electrical hazards. It is recommended that
proper practices be performed when connecting electrical components to
batteries, to prevent shorting of the battery. Shorting a battery can be dangerous
because it generates a spike in the current and arc flash. Systems that can be
potential shock hazards produce an overall voltage greater than 50V. Any system
below 50V is not considered to be a substantial shock hazard. IEC/TR 60479-5
and NFPA 70E define the touch voltage threshold at 100V. Shock-resistant gloves
should be made available to anyone working with grounded batteries that produce
50V to 100V. For batteries greater than 100V, insulated gloves need to be worn
that are able to withstand over 100V.

Arc flash hazards are defined as having a DC voltage greater than 100V. For
batteries under 600V, arcs that exceed a couple inched cannot be sustained. For
batteries over 100V, the risk of arc flash is greatly reduced if potentials are spread
out at least one foot. The chemicals inside a VRLA battery can pose a hazard, due
to the electrolyte containing sulfuric acid. Damaged VRLA batteries can sometimes
leak the electrolytes, which poses a threat. Although spill containment is not

66

required, it is recommended. A neutralizing agent for the electrolyte can generally
be provided by the manufacturer. Eye protection is required when handling
batteries to avoid electrolyte contact with eyes. If an arc flash is likely to occur with
a battery, gloves should be provided that aid against thermal hazards.

The location in which a battery is installed should be considered. There should be
enough space for the battery and other components to reside safely. The area in
which the battery resides should be well-kept, dry, and properly ventilated.
Additionally, the battery should avoid direct contact with sunlight to prevent
overheating and case material degradation. Battery installations should be done
so that they can be maintained in the future. Ventilation is another important
consideration to take note of for a VRLA battery. VRLA batteries typically display
optimal performance when operating between temperatures of 20°C to 25 °C.
VLRA batteries operating in steady-state conditions produce a temperature that is
higher than the surrounding temperature. When a VRLA battery is properly
ventilated, this temperature rise is no longer an issue. Also, placing a VRLA battery
in a temperature lower than 20°C decreases performance and even sizing. Overall,
lower temperatures cause decreased battery capacity, while higher temperatures
cause a short life cycle and overheating.

4.1.4.1. Design Impact of Battery Standards
IEEE Standard 1187-2002 has many great recommendations that our team will be
sure to follow when we are developing, prototyping, and testing our system. To
power the components of the shopping cart, a 12V rechargeable valve-regulated
lead-acid battery will be used. Since the battery that powers the shopping cart is a
VRLA battery, the recommendations in this standard can be taken and applied to
the project.

A significant recommendation that was mentioned was considering the operating
temperature of the battery. Shopping carts spend a good amount of time outside
in parking lots where rising temperatures can occur, especially during the day.
Additionally, the sunlight shines on objects and heats up their surfaces. These two
factors are should be sought to be eliminated, as they damage the battery and
cause it to exhibit less than optimal performance. To prevent this, it will be a priority
to place the have the battery reside in an enclosed area where sunlight cannot
reach the battery. Additionally, the enclosed area will be well-ventilated so that the
steady-state temperature of the battery will not produce negative effects. The
enclosure for the battery will also prevent the any leaked electrolyte solution from
the battery to escape outside of the enclosure. Although this is not a requirement
in the standard, it is a safe practice that should be followed in this scenario, since
it could potentially protect a user of the shopping cart of toxic chemicals.

67

4.1.5. Programming Languages
This section provides an in-depth discussion on standards and common practices
regarding programming languages implemented in our system. The C language
will be used for embedded programming, while Node.js will be used for the
backend development.

4.1.5.1. C Programming Language
The standard naming practice for coding in C is to have descriptive variable
names. If the variable represents a unit or measurement, such as weight or
distance, it is good practice to include the units that are being measured. For
instance, if a variable for a program is representing the distance of a path in
kilometers, it might be called distance_km. The same goes for naming functions;
the name of the function should match the purpose of the function.

As for the placement of braces, it is standard to put the starting brace on the same
line as the conditional or loop statement, and to put the closing brace on its own
separate line, as shown below.

Figure 26. Code snippet 1

Although if statements and loop statements don't need braces if the code is a
single line, it is always a good practice to utilize them anyway, in case an extra line
of code is added to the statement at a later time. This also provides a more
consistent look and promotes unambiguity. Furthermore, after the closing brace, it
is good practice to add a comment at the end of the statement to leave a reminder
of the functionality of that statement.

For parentheses, the following common practices are used:

 Parentheses should not be placed next to keywords; instead separate them
with a space.

 Place parentheses next to function names

 Do not place parentheses in return statements unless it is absolutely
needed.
An example of these practices can be seen below:

68

Figure 27. Code snippet 2

An additional standard when coding in C is that a line should not exceed 78
characters. This is because even though large monitors can stretch the windows
so that they can view more than 78 characters per line, not all systems have the
same window size, which means that not all readers will be able to see all
characters. For readers with smaller window sizes, they may be required to utilize
a horizontal scroll bar, which is not very programmer friendly. Also, having only 78
characters per line allows all the code to still be seen even when multiple windows
are open.

Another standard when coding in C is that there should only be one statement per
line, with the caveat being that it makes the code easier to read and understand.
The only exception to this is if the statements are closely related, as demonstrated
with the if and else if statement below:

Figure 28. Code snippet 3

Similarly, variable declarations should only contain one variable per line. This is
because documentation can be added later for the variable on that line. This also
makes the declarations clear, so that the programmer does not accidentally
declare a pointer when it should have been simply a char. It also allows the reader
to clearly view which variables have been initialized.

Figures 29 & 30. Code snippets 4 & 5

69

4.1.5.2. Node.js
In Node.js, it is standard practice to avoid the "this" and "new" when coding. This
is because Node.js has a lot of higher-level functions, and involves passing many
callbacks. By avoiding using "this" and "new", it makes the functions easy to move
around without the need to bind to a certain context. Overall, closures are preferred
over object methods, and explicit arguments are preferred over closures.

Figure 31. Code snippet 6

Another common practice in Node.js is to break the code up into small functions.
Breaking up the code into smaller parts makes it easier to recombine them in new
ways later on, and helps when doing callbacks in the code.

Figure 32. Code snippet 7

70

Figure 33. Code snippet 8

In Node.js, a function should be either always synchronous or always
asynchronous. If a function is both synchronous and asynchronous, then it can be
nearly impossible to predict the codes behavior. When the code below is utilized,
for example, it can be quite easy to miss the cached case causing the code to near
complete.

71

Figure 34. Code snippet 9

It is also standard practice to always check for errors in callbacks, as not doing so
can cause a long and tedious process. Often times the program will continue
executing, but will fail later on causing a different error message to be displayed.
Another standard is to return on callbacks. Callbacks tend to be the last thing in
the code, similar to a return in C. However, a callback will not halt a function after
it is reached. Therefore, in order to prevent execution from continuing after calling
a callback, it is best if one returns the callback function call.

Try-catch blocks should only be used with synchronous functions. If it is attempted
with asynchronous code, it will not work and it may kill the whole server process
without an uncaughtException handler. Even then, the error will most likely have
no meaningful context. Therefore, in asynchronous functions, always pass errors
back to the callback. This practice will be fine as long as the code is checking for
errors in callbacks as mentioned earlier.

4.1.6. Version Control
For version control, it is always good practice to write a descriptive commit
message. This is useful because when another member on the team is examining
the changes in the code, they will know the purpose of that change. It also makes
it easier for a reader who is looking for changes related to a particular subject.

Another standard for version control is to have each commit have a single purpose.
Once the purpose is decided, then the commit should be executed solely for that
purpose. Doing this makes locating changes relating to a certain subject easier,

72

and it also simplifies the process of determining which changes are responsible for
bugs. If one commit contains code that is for multiple purposes, or is code for a
certain purpose, is spread across multiple different commits, then the version
control history becomes compromised.

Figure 35. Version Control

Although commits are important, it is also important to avoid indiscriminate
commits. When committing, it is good practice to only commit the specific files.
This avoids making unintended changes to files and having a single commit with
more than one purpose.

It is also standard to always have the most up-to-date version of the code. Since
multiple people are working on the same files, that means that the programmers
on the team should update their files often. This avoids the problem of having to
resolve conflicts with differing versions of code. This tends to save a lot of time and
aggravation.

Another common practice that aims at avoiding conflicts is sharing the changes
that have been made in the code frequently. That means when a programmer on
the team finishes their section of work, the code should be shared to the other
members of their team as soon as possible. However, the code that is shared
should still be checked to see that it doesn't have any bugs and doesn't produce
any unexpected output.

73

4.2. Constraints
Our SmartKart shopping system includes several constraints in regards to the
hardware and software component design. This section will discuss economic,
size, environmental, safety, security, and ethical constraints considered by our
team.

4.2.1. Economic
The cost for designing and producing our SmartKart shopping system is a primary
constraint for our team. As this system is not being sponsored by any corporations,
it must be funded by the group members themselves. This constraint inhibits the
team from trial and error through testing different components to decide which
ones are most useful for the system; instead, it requires the group to perform a
great deal of research in order to determine the best components to purchase and
implement in the system.

Additionally, our team’s goal is to not only keep costs low for prototyping, but for
manufacturing the system as well. Manufacturing costs need to be low to increase
the system’s potential for being marketed to shopping corporations. The SmartKart
shopping system needs to be as affordable as possible, as it would need to be
mass produced and marketed to such stores, and it would be used by thousands
of customers daily. Ideally, our team would be able to purchase the highest quality
components for building this product, however this may be inhibited in order to
keep a balance between price and quality.

4.2.2. Size/Portability
While determining the kind of shopping cart to use with this project, a few things
had to be considered. The shopping cart had to be modern-looking, and have
some appeal to a potential customer that might one day the cart. The shopping
cart also had to be relatively small and weigh a reasonable amount. This way, the
shopping cart would not be too difficult to push and carry. The dimensions of the
chosen shopping cart are 41.75 inches by 24 inches by 21 inches.

The microcontroller, battery, RFID sensor, Wifi module, voltage regulator, GPS
module, and all associated PCBs and wiring would go fit neatly inside the smaller
basket that exists on the shopping cart. These components are relatively small and
would have excess space in the smaller basket. The largest component would be
the battery, which is 3.5 inches by 2.8 inches by 4.1 inches. Additionally, the
electromagnetic locking devices would reside near the wheels of the shopping cart.

74

4.2.3. Environmental
As the producer of SmartKart, we are responsible for creating a product that is
environmentally friendly. The SmartKart system is not going to negatively affect
the environment, as the original design calls for the power to come from a battery
that is built into the system. Although it is not a primary goal, if time allows it,
research will be done to see if an alternative energy source could power the
battery, such as solar power to fuel the system. If it is found that such alternative
energy sources could power the system without any drawbacks, then it will be
implemented into the system.

4.2.4. Safety
The safety of the end users is of utmost concern to our team regarding the
development of the SmartKart shopping system. The system’s main purpose is to
create a friendlier shopping experience for the users, which should not impede on
their health or safety whatsoever. Our teams main focus of concern is that the
user’s personal information is protected at all costs. With our SmartKart shopping
system, the users are required to input their personal data, including their credit
card information, and as a result, our team has taken extra measures to ensure
the safety of this data. This was accomplished by using a payment gateway, which
allows us to send the user’s information to other servers that are PCI compliant in
order to safely secure their data.

Another focus of concern in regards to the users’ safety is that the components
chosen to produce the system are safe to use in all weather conditions. More
specifically, our battery was chosen such that it may withstand extreme
temperatures without issue. Originally a Lithium battery was considered for our
power source, but upon further research, it was clear that this option was not
reliably safe, and thus our team bypassed this option for an alternative, safer power
source.

4.2.5. Security & Scalability
Security constraints would prevent developers from incorporating features without
securing/encrypting user information being computers. While scalability
constraints would prevent the system from including functionality that could hinder
system performance. From a hardware perspective, the shopping cart devices
must always be connected to a network to properly work. Any store that uses the
devices must provide a robust secure wireless network that allows the devices to
securely communicate with the system.

The devices must also have protocols to handle physical tampering so data on the
device isn’t divulged, but the device can still be used after robust testing. The
system should be able to integrate into any retail companies’ system without
affecting either systems security. If the system is being used by many retail

75

companies, there could be a data storage and performance issues. The system
would store all product and valid coupon information per store which could cause
data management to become an issue requiring additional code to handle retail
company’s unique cases.

The system would also need to be resistant to high requests if many people are
shopping or else the system could possibly go down, affecting all customers open
shopping carts. There are some web service providers that dynamically allocate
resources for our system if its CPU usage every exceeds a certain threshold and
hosting the system over a cluster of computers across to solve performance issues
that may result in system crashes.

The system must also be designed so retail stores can’t access other retail
companies’ information and shopper’s information without their authorization, this
includes previous purchases, but they are only permitted to view purchases made
at their company. This would require that every purchase and shopping cart device
has unique id.

4.2.6. Ethical
The purpose of SmartKart is to improve the overall shopping experience of our
users. Therefore, the protection of our users’ personal information is of the utmost
importance, and there will be safeguards to ensure that their information is
protected. Furthermore, the SmartKart system will not use any toxic materials or
any material that comes from an unknown origin in order to reduce the cost of the
product. The features promised in SmartKart will also not be removed for purely
financial reasons. In regards to patents, research will be done to ensure that no
patents are infringed upon. Moreover, any protected designs or ideas will not be
used in the SmartKart system without the proper credit given if applicable.

76

5. Project Design
This section describes, in detail, the overall design of our SmartKart shopping
system. It includes the initial and current design of the system, as well as an
overview of the system’s software design architecture.

5.1. Hardware
This section will explain in detail the hardware components that will be used.
Hardware is needed to read in store item RFIDs, sending the ID to a database,
and locking the shopping cart.

5.1.1. Initial System Design
At the beginning of the semester, a document called “Divide and Conquer” was
created for the Smart Cart, to go over some of the early stages of designing the
project. To see and understand how the hardware components would operate with
one another, an initial design block diagram was created, as can be seen in Figure
X. This diagram provided a high-level overview of how the overall system would
be constructed.

Figure 36: Initial Design Block Diagram

77

5.1.2. Updated System Design
Further research into the project led to some minor changes in the system design.
Overall, the system still operates fundamentally in the same way.

First, the Bluetooth module would be replaced with a WiFi module. While the
Bluetooth module is useful for communicating with an Android mobile device, it
would potentially pose a problem on the system’s software design. The Android
device would not be running a regular mobile application to update the items and
costs in the shopping cart. Rather, a progressive web application would be used
to implement this. Progressive web applications operate in a similar fashion that a
website does. A database is used to store relevant information, and insertions and
queries can be performed. Because of this, the progressive web application is
grabbing data from the database, and not via Bluetooth. An easy workaround to
this is to replace the Bluetooth module with the WiFi module. Now instead of
communicating directly with the Android device, the hardware is now inserting the
RFIDs into the database. This provides a correct and efficient way for the
progressive web application to pull information from the database and update itself
accordingly.

Second, the actual implementation for the shopping cart’s locking mechanism was
widely unknown at the early stages of this project. After further research into
various ways to lock a wheel, it was decided that placing electric linear solenoids
in close proximity with the two rear wheels of the shopping cart would serve as the
locking mechanism. When powered on, the rods inside the electric linear solenoids
would be pushed outwards and would come into contact with the shopping cart
wheels. The amount of friction and force applied to the wheel by the rod would
prevent the wheel from rolling any further.

Figure 37. Hardware Block Diagram

78

5.1.3. Logic Diagram
The following figure is the logic diagram representation of our SmartKart shopping
system.

Figure 38. Software Block Diagram

79

5.2. Software

This section will explain in detail the user interface design, system’s REST API,
requests to other APIs, and architecture.

5.2.1. UML
Refer to the Appendices section 9.1 UML Diagram.

5.2.2. Action Sequence Diagrams
Users will be able to view a selected stores available coupons, connecting to a
shopping cart to begin shopping, add and/or removing item from their shopping
cart, making returns, and review previous purchases all from the application.

Figure 39. Review coupons & products sequence diagram

Unlike every other feature on the application, users are not required to have an

account and login to see the products available and coupons offered at stores.

User will first have to select a store from a list of stores to see the store items and

promotions. Due to device storage constraints, the client’s device will make

constant requests to get the previous/next set of items/coupons. Items will display

a name, picture, and cost of the it, while coupons will show the name, picture, and

discount type. Users will be able to select a single item to get more information

about it, like the isle it’s on in the store and/or if its currently in stock.

80

Figure 40. Login process sequence diagram

Besides searching coupons and items at a store, users will not be able to fully

interface with the system. Users are required to login before they can make

purchases, view previous purchases, or make returns. If a user enters credentials

that are associated with an account on the system then they will be notified of an

unsuccessful account login attempt. However, if the entered username is on the

system, but the user fails entering in the correct password after 5 attempts the

account should be locked. If the user successfully logs in then the will be directed

to the home page. If the user doesn’t have a verified credit card on their account

then they will only be able to see previous purchases, otherwise, they can see a

summary of their most recent purchase and image icon to take pictures of a

shopping cart’s QRcode.

Figure 41. Connect & add/remove items from cart

81

Once a user is logged in they can connect to a shopping that way a user is

temporarily bounded to a single shopping cart and begin shopping. The user will

notify the system what cart they are using by sending a picture of the QRcode on

the shopping cart which stores the information of what store the cart belongs to

and the cart’s unique id. As the user adds or removes item from their cart the data

read from the item’s RFID tag will be sent to the server to update the user’s

shopping cart. Every item can have a unique id stored in the tag, that way if the

item is found to already be in the cart we know the user was removing it from the

cart. As we add or remove the item from the cart we must reapply and discount

associated with the item. Then, the user’s device will receive updated data about

the item.

Figure 42. User cashes out sequence diagram

When the user notifies the system that they are done shopping then the server will

fetch information about the items in their cart. The database will fetch all the items

the user has in their cart and then check to see if any items have coupons that can

be applied. Once this is complete we will calculate the transaction’s total and send

a request to charge the user’s credit card via the Stripe API. Once the charge is

successful the user will receive an electronic receipt showing everything they

purchased and the discount applied. We will save the electronic receipt generated

on the file system and update the transaction to show the where the receipt is

stored.

82

Figure 43. Review previous purchase(s) sequence diagram

Once a user is successfully logged in they can navigate to the ‘payHistory’ page

to view a list previous purchases. Each element in the list will display the date the

transaction was made, the amount, and what store this took place. If the user has

more than 50 previous purchases we can implement paging instead of loading all

the data at once so users don’t notice device performance issues. When a user

taps on a specific transaction the page will be loaded with the pdf generated when

they made the purchase. The information on the pdf receipt shows the transaction

id, store information, and a layout showing the items purchased and applied

coupons.

Figure 44. User attempts making return

83

When a user attempts to make a return to the store an employee must make the

return request to the system sending the employee making the request, the item(s)

being returned, and the id of the transaction these items were purchased under.

The system must then verify if this return is allowed checking to see if the item is

being returned in the allotted period, item was purchased under provided

transaction, customer account has valid credit card, or the account making

requesting a return isn’t the same employee account making the return. If the

system confirms this transaction as successful then the system must fetch

information about the cost of the item and make a return charge to the credit card

the customer has on file. Then we generate a new receipt showing the

transactions performed save it and send a copy to the customer.

5.2.3. Application
We will be using Amazon’s S3 for storing pdf receipts of user transactions this way
only need to fetch a file instead of fetch records from database and compute
transactions again saving time and resources. DynamoDB will be storing all
information about customer accounts, store coupons and products, and previous
transactions. For payment processing or user payment validation, Stripe will
perform charges, returns, and checking if a user’s card is valid. Once the user’s
card has been charged we use SendGrid to email the customer a receipt of their
recent purchase.

Figure 45. Architecture Diagram

84

5.2.3.1. UI/UX
The following section illustrates mockups of the application our team is designing
for our SmartKart shopping system. Once logged in, the user will be able to access
all pages on the app from the navigation icon, as shown in Figure 48.

a. Login
From this page, the user can login, reset their password, or create a new account.
If the user clicks the register button they will be directed to the register page.
However, if the user attempts to login it will either redirect them to the home page
or display a message on the login screen alerting them of an unsuccessful login
attempt.

Figure 46. Login Page

85

b. Signup
Here the user will enter their email, password, desired username, and card
information. The user will not be required to enter in their card information,
however, this will prevent them from making purchases from the app.

 Figure 47. Account Registration Page

86

c. Profile
The user will be able to view their account information, except their card
information. Everything displayed on the Profile page screen will be input fields
with the default value of their current account information. Users can edit the
information and click update to save the changes to their account, however, if they
click close account their account will be marked as deleted.

 Figure 48. Profile Page

87

d. Home
On the home page, if the user has a valid card on their account then they will be
able to see the Start Shopping box, which displays all the carts available. If their
account does not have a valid card, then they will not be able to see the Start
Shopping box and see the alert message in the diagram. If the user has made
previous purchases they will be able to see a summary of their most recent
purchase.

 Figure 49. Home Page

88

e. Purchase History Summary
On the purchase history page, users can scroll through the summaries of the
purchases they made. The summary will show the cost, date, how much they
saved, and how many items they purchased. If the user clicks on the details label
they will be redirect to the Purchase History Details page, which will display all the
items they purchased and coupons applied to their purchase. If they select the
PDF label the user will download a copy of their receipt. Users will be able to filter
through their purchases by store, date, and amount spent.

 Figure 50. Purchase History Page

89

f. Purchase History Details
In the Purchase History Details page the user can scroll through all the products
they purchased and their price and coupons applied to their purchase. At the
beginning of the page the user should be able to see the date, location of store,
and purchase id related to this purchase. Although, the user can scroll through
purchased products and purchase information, they should always be able to see
the total cost of their purchase at the bottom of the screen.

Figure 51. Purchase History Details Page

90

g. Coupons
Users will not be required to have a valid card on their account in order to see the
coupons offered by a selected store. Each coupon available should display an
image, type of coupon, small description, and amount saving. Users will have the
ability to search through coupons based on the type (BOGO, 50%, clearance, etc.).
Note, users will only be able to see the current coupons being accepted by the
store.

Figure 52. Coupons Page

91

h. Current Cart
Users should be able to view everything currently in their shopping cart. They will
be able to scroll through the products in their shopping cart, applied coupons, while
always being able to see the running total of the shopping cart. If the user notices
they have an item in their cart that was not automatically removed, they can
remove the item from their shopping cart.

Figure 53. Current Cart Page

92

5.2.3.2. System’s API
Desired API calls for system that allow users to interact with system. There are
four different components for the API portion of the system, each intended for
different sets of users interfacing with the system. The one of the components is
for the devices on the shopping cart, while two components allow users to get
information about available coupons/items at the store or edit/review account
information and review previous purchases, and the last component is strictly for
store employees. If a request is successful we set the isError flag to false, but if
there is an error we set it to true and return an error message. For the GET
requests the data being received is in the URL query string, while for the other
request types that data is being wrapped in the body.

a. Cart
API calls that allow the devices on the shopping cart to communicate with system
to add and/or remove products from current customer using the shopping cart.
Route to access these requests is: /cart/<NAME>

Table 8. Cart API calls

METHOD NAME RECEIVE RESPONSE

POST Connect cartId token

PUT Add cart’s token

itemId

success/error

message

DELETE Remove cart’s token

itemId

success/error

message

 connect will generate a token with the cartId’s for the system to validate the
cart whenever it makes a request to the system

 add will tell system to add the item to the user’s running shopping cart

 remove will tell system to remove the item from the user’s running shopping
cart

b. Shopping
API calls to allow users to see products and coupons available at current store.
Route to access these requests is: /shopping/<NAME>. As you can see, we do
not require users to send an accountId to make these API requests. This is
because, it would be poor business to require people to have an account to see
coupons and products available at a selected store.

93

Table 9. Shopping API calls

METHOD NAME RECIEVE RESPONSE

GET coupons storeId
date
types: []
pageIndex

list of coupons that
match types
selected
success/error
message

GET products storeId
filter:
 minCost
 maxCost
 types: []
 showOutOfStock
pageIndex

products:
 Image URL
 name
 cost
success/error
message

GET products/{id} storeId isle number
name
image URL
stock count
success/error
message

 coupons will fetch the next 25 coupons available at specified store, default
date sent is current date so shows current coupons

 products without an itemId will fetch summary for next 25 products available
at specified store that match provided filters

 products with itemId will fetch detailed information of specified item

c. User
API calls to allow users to update account information and fetch purchase history.
Users can only see information related to their account. Every API request here
requires the user’s accountId so it can make sure other users cannot see other
user’s account information. Route to access these requests is: /user/<NAME>

Table 10. User API calls

METHOD NAME RECIEVE RESPONSE

POST Login username
password

Token
success/error
message

POST Connect token
cartImage

success/error
message

PUT updateAccount token
accountInfo:

success/error
message

94

METHOD NAME RECIEVE RESPONSE

POST Create accountInfo: Token
success/error
message

POST Logout token success/error
message

GET payHistory token
filter:
 dateRange
 storeId
pageIndex

list of previous
purchases
summaries
 dateTime
 total
 store
 storeId
 checkoutId

GET payHistory/{id} token
checkoutId

list of every item
purchased in that
checkout
 name
 cost
checkout total
location

DELETE removeAccount token success/error
message

 login will generate a token for the user if they entered the correct
credentials, else return error message

 connect will notify system to bind user to a shopping cart, so every time a
device adds/removes item to cart it updates user’s shopping cart

 updateAccount allows user to update certain aspects of account, if they
change their card information, we must validate it before allowing users to
make purchases

 create notifies system to add user to system, must validate user’s payment
card

 logout notifies system to get rid of session/token for current user

 payHistory without checkoutId will fetch next 25 previous purchases based
on filter options

 payHistory with checkoutId fetches all items bought, applied coupons, total,
date, location, and purchaseId for selected purchase

 removeAccount will mark user’s account as deleted so it may no longer be
accessible

d. Store
This will allow stores to easily interact with the system allowing them to accept
customer returns and edit product and coupon information. Every request to these

95

URLs require somebody with a store employee account. For security purposes,
we must not allow customers that work at the selected store to make returns,
however, somebody else can make a return for them. For instance, if Bob worked
at Publix A they must not be allowed to make returns on their purchases with their
account, they would need another employee to accept their return. For the update
APIs, users can just send the elements they wish to change for the selected
product and coupon. Although, it is mandatory for users to send all the required
information when they wish to add new products and coupons to the store. Route
to access these requests is: /store/{storeId}/<NAME>

Table 11. Store API calls

METHOD NAME RECEIVE RESPONSE

POST makeReturn employeeId
checkoutId
products: [{ids,
cost}]

amount
reimbursed
new total
success/error
message

POST coupon employeeId
info:
 type
 productid

couponId
success/error
message

PUT coupon/{id} employeeId
info:
 type
 productId

success/error
message

DELETE coupon/{id} employeeId success/error
message

POST coupon employeeId
productInfo:
 isle #
 cost
 name
 type
 amountInStock

productId
success/error
message

PUT product/{id} employeeId
info:
 name
 cost
 type
 amountInStock

success/error
message

DELETE product/{id} employeeId success/error
message

POST pushCouponUpdates employeeId
couponId

list of all coupons
updated
success/error
message

96

METHOD NAME RECEIVE RESPONSE

POST pushProductUpdates employeeId
productId

list of all products
updated
success/error
message

 makeReturn: will first verify if the products the customer is trying to return is
on the provided checkout. If it is we will then use the Stripe API to make a
return to the customer’s provided credit card

 coupon(POST): will allow store to create new coupons. New coupons must
be bound to a product currently sold by the store and is not marked as
having changes.

 coupon(PUT): will make changes to store coupons. This is intended to be
used to make new coupons for the next week, but it can be used to make
changes to previous or current coupons. Any coupon updated will be
flagged as having changes and will not be available to customers until the
coupon are validated.

 coupon(DELETE): will mark coupon as no longer to be used at store. Can
be used to remove coupons that were not verified.

 Product(POST): will be used to add new products to the store. If successful
in adding it to the database, we will return the products id

 product(PUT): will make changes to products currently sold at the store.

 product(DELETE): will mark product as no longer sold at the store. Should
only be used if store knows they will no longer be selling a product, should
not be used if a product runs out of stock.

 pushCouponUpdates: will push the changed and newly added coupon(s) to
the public. If provided a single oouponId will only push that single coupon,
but if no couponId is provided all newly and changed coupons will be
pushed.

 pushProductUpdates: will push the changed and newly added product(s) to
the public. If provided a single productId will only push that single product,
but if no productId is provided all newly and changed products will be
pushed.

5.2.3.3. Third-Party API Calls
The bellow section covers the functions we will need to call from the APIs we
intend on using.

97

Table 12. Package installation commands

API Installation instruction

Bcrypt npm install bcrypt

Express npm install express

Passport-local npm install passport npm

install passport-local

pdfKit npm install pdfkit

QRcode-reader npm install qrcode-reader

sendGrid npm install sendgrid

socket.io npm install socket.io

Stripe npm install stripe

a. Bcrypt
// load modules & create instance
var bcrypt = require('bcrypt');

// define # of rounds going to salt data const
saltRounds = 8;

// autogenerate salt and hash

bcrypt.hash(myPlaintextPassword, saltRounds, function(err, hash) {

 ...

});

// check password, will go inside defined callback function for database call
bcrypt.compare(unhashedPassword, hash, function(err, res) {

 ... // additional logic for creating session

});

b. Express
// create instance

98

var express = require('express');
var app = express();

// routing

 // get, doesn't have body so everything must be in url
app.get('/user/:id', function(req, res) { res.send('user '
+ req.params.id);

 });

 // post

 app.post('/', function (req, res) { res.send('POST request
to homepage, body: ' + req.body); });

 // delete

 app.delete('/', function (req, res) { res.send('DELETE
request to homepage, body: ' + req.body);

 });

 // put

 app.put('/', function (req, res) { res.send('PUT request
to homepage, body: ' + req.body); });

 // route app.route('/events').get(function(req, res, next)
{...});

// response // download file
res.download('path/to/file');

 // render res.render('<view_name>', {<data_load_in_view>},
function(err, html) { ...

 })

 // json
res.json(<data>);

 // send

99

 res.send([BODY]);

c. Passport-local
// create instance

var passport = require('passport');

var LocalStrategy = require('passport-local').Strategy;

// validate if user is who they say they are
passport.use(new LocalStrategy({
usernameField: 'email', passwordField:
'passwd'

 },

 function(username, password, done) {

 // ...

 }

));

[CALL FROM EXPRESS]
app.post('/login',
passport.authenticate(

 'local',
{

 successRedirect: '/',
failureRedirect: '/login', failureFlash:
true

 }

)

);

d. PdfKit
// load modules & create instance
var PDFDocument =
require('pdfkit');

var doc = new PDFDocument;

100

// automatically starts with a page //
add new page to document
doc.addPage();

// switch to different page
doc.switchToPage(<int>);

// done defining data writing to pdf doc.end();

// include image

// if don't define any position cordinates then it is placed at current cursor

// if don't define a width and heigth, image is displayed at full size
doc.image('<image>', <x_pos>, <y_pos>, width, height);

// include links doc.link(<x_pos>, <y_pos>, width, height,
'http://google.com/');

// define file name doc.info.Title
= "<file_name>";

// write to buffer

var stream =
doc.pipe(blobStream());
stream.on('finish', function() {
...

});

e. QRcode-reader
// load modules & create instance
var QrCode = require('qrcode-
reader'); var qr = new QrCode();

// define callback to be ran after decodes
image qr.callback = function(result, err) {
if(err) {

101

console.log(err); }
else { ...

 }

}

// decode data

// passing it the image obtained from the qr code scan

var data = canvas.getContext("2d").getImageData(0, 0, width, height);

dr.decode(data);

f. SendGrid
// load modules & create instance var sg =
require('sendgrid')(process.env.SENDGRID_API_KEY)

// create request

var request = sg.emptyRequest();

// define content
request.body = {
"attachments": [

 {

 "content": "[BASE64 encoded content block here]",

 "filename": "receipt_<transaction_id>.pdf",

 "name": "receipt",

 "type": "pdf"

 }

],

 "content": [

 {

 "type": "text/html",

 "value": "<html><p>Hello, world!</p><img src=[CID GOES

HERE]></html>"

102

 }

],

 "from": {

 "email": "example@example.com",

 "name": "Smart Kart"

 },

 "personalizations": [

 {

 "subject": "Hello, World!",

 "to": [

 {

 "email": "john.doe@example.com",

 "name": "John Doe"

 }

]

 }

],

 "subject": "Hello, World!",

 "template_id": "[YOUR TEMPLATE ID GOES
HERE]" };

// send request to sendgrid to send email via sendgrid
request.method = 'POST' request.path =
'/v3/mail/send'

sg.API(request, function (error, response) {
if(error) {

console.log(error); }
else { ...

 }

});

103

g. Socket.io
// server api calls
// create instance

 var server = require('https').Server(app);

 var io = require('socket.io')(server);

 // connect to server

 io.on('connection', function (socket) {
socket.emit('news', { hello: 'world' });

 });

 // send data to specified user/device socket.to(<socketid>).emit('hey', 'I
just met you');

 // send to all users socket.broadcast.emit('broadcast',
'hello friends!');

// client api calls

<script src="/socket.io/socket.io.js"></script>

<script> var socket =
io.connect('http://localhost');
socket.on('<chatroom>', function (data) {
...

 });

</script>

h. Stripe
// create instance var stripe =
require("stripe")("API_KEY");

// create customer so can charge them for later
use stripe.customers.create({ email:
"paying.user@example.com", source: token,

}).then(function(customer) {

 // save customer's id our database so can make charges to account later times

104

});

// charge customer's card, call when retrieve customer's customerId when
checking out stripe.charges.create({ amount: <amount>, // in cents
currency: "usd", customer: customerId,

});

// fetch customer info

stripe.customers.retrieve(<customerId>,
function(err, customer) {

 // logic

 }

);

// update account

stripe.customers.update(<customerId>, {

 description: "Customer for sofia.wilson@example.com",
source: { object: "card", exp_month: MM,
exp_year: YYYY, number: "<card_number>",
cvc: XXX name: "<card_holders_name>"

 }

 }, function(err, customer) {
...

});

// returns, can call as many times until charge is completely refunded
stripe.refunds.create({ charge: <customer_selected_charge>,
amount: XXXX, // in cents

 }, function(err,
refund) { ...

 }

);

// response errors from request
card_error: card can't be charged

105

 // codes

invalid_number: not valid credit card #
invalid_expiry_month: not valid expiration
month invalid_expiry_year: not valid expiration
year invalid_cvc: not valid CVC code
expired_card: card has expired card_declined:
card was declined

106

6. Hardware Prototyping and Testing
This section gives a detailed overview of the component testing and prototyping
that our group implemented for our SmartKart shopping system, including the
hardware and software designs integrated in our system.

The first subsystem consists of the RFID sensor and the WiFi module. The RFID
sensor will read in store item RFID tags and will pass the RFIDs to the WiFi
module. The Wifi module will then send the RFIDs to the database, so that the
progressive web application can them to update the items and overall pricing.
Further information on these two components will be covered below.

The second subsystem consists of the GPS module and the electromagnetic lock.
The GPS module will receive data from at most 4 satellites to generate its location
and based on the location the cart’s locking mechanism will be enabled. If the
GPS on the shopping cart off store property it will send the signal to lock the cart.
Further information on these two components will be covered below.

6.1. Voltage Regulator Design
For this project, the microcontroller and its components will need to be provided
with a voltage range of 3.3V to 5V. The voltage needs to be constant DC voltage
and should remain constant even when the input voltage varies slightly. A 12V DC
battery will provide the input voltage to the regulator. Once a suitable voltage
regulator design has been developed, it will then be implemented in a PCB and
will be used to power the microcontroller.

6.1.1. Linear Voltage Regulator
A simple step-down linear voltage regulator was first considered to supply a
suitable input voltage to the microcontroller and its components. The design uses
a L7805 IC and two capacitors C1 and C2. A schematic of this can be seen in
Figure 54 below. The regulator takes in an input voltage of 9V to 15V, and supplies
an output voltage of 5V. The capacitors values C1 is 1.0 microfarads and C2 is
10.0 microfarads.

107

Figure 54: Linear Voltage Regulator Schematic

Note that in the Figure Y, C1 is equal to Cx in series with Cy. During testing, a 1.0
microfarad capacitor could not be found, so Cx and Cy, which are both 2.2
microfarads, were placed in series. This creates a capacitance value
approximately equal to 1.1 microfarads. The input voltage range was tested, and
from 9V to 15V, the output voltage stayed at a constant 5V. These results are
satisfactory for the project, and should meet the needs of any component that
requires an unchanging voltage.

6.1.2. Step-Down Voltage Regulator
Another regulator that was considered to supply power for the system was a step-
down voltage regulator. Using a step-down voltage regulator over the previous
linear voltage regulator would yield positive impacts. Step-down voltage regulators
dissipate less power, which means minimal effort would be needed in designing a
heat sink. Since less power is dissipated, a step-down regulator is able to achieve
a much higher efficiency than a linear voltage regulator. Step-down voltage
regulators are generally more stable than linear voltage regulators, with greater
protection against sudden changes in input voltage.

To aid in the design of a step-down voltage regulator for the power supply, Texas

Instrument’s WEBENCH software was used. An input voltage range of 11.5V to

12.5V was sought after with an output voltage of 3.3V and a maximum load current

of 2A. The efficiency function of the circuit is very logarithmic and shows that as

the load current increases, the efficiency increases. The power module used for

this regulator is the LMZ12010. This module provides an implementable step-down

DC-to-DC converter and can support a maximum load current of 10A.

Shown below is an EAGLE CAD schematic of the step-down regulator.

108

Figure 55: Step-down Voltage Regulator Schematic

A table depicting the component details of the schematic is shown below.

Table 13: Step-down Voltage Regulator Schematic Components Description

Reference
Designator

Value Part Number Type

CIN 33μF 3M0802 Electrolytic
Capacitor

RFBT 3.36KΩ

- Carbon
Composite
Resistor

RFBB 1.07KΩ - Carbon
Composite
Resistor

COUT, COUT_2,
COUT_3

220μF 3M0802 Electrolytic
Capacitor

RLOAD 1.65Ω - Load Resistance

U1 - LMZ12010 Step-down
DC-to-DC
Converter

The components of this step-down regulator should be easily obtainable and fairly

easy to build both on the breadboard and PCB. The LMZ12010 is 15 millimeters

squared, which is relatively small and will take up minimal space on the PCB.

6.1.3. Comparison
To decide which voltage regulator would be the better choice to supply power for
the system, the datasheets for the LM7805 and LMZ12010 were perused. Some
of the key features to consider were efficiency, input and output voltage, operating
temperature, maximum load current, and pricing. The follow table is depicted
below to show a comparison of some the features these ICs exhibit.

109

Table 14. Voltage Regulator chip comparisons

Features LMZ12010 LM7805

Operating Voltage 6V to 20V 7V to 35V
Maximum Output

Current
10A 1.5A

Output Voltage Adjustable Fixed
Operating Temperature -40 °C to 125 °C -65 °C to 150 °C

Maximum Efficiency 92% 41%
Switching Frequency 350KHz N/A

Unit Price $2.45 $0.46

It is seen in the comparison that the price of the LMZ12010 is significantly higher

than the LM7805. Pricing is not much of a concern for this project, and spending 2

dollars more for a chip should not be seen as a negative factor. The operating

voltages for both chips are within our need 3.3V to 5.0V range and the maximum

output currents greatly exceed the 2mA load current the microcontroller will need.

The output voltage for LM7805 always remained constant, while the LMZ12010

adjust its output voltage. An adjustable output voltage could prove useful for

instances where 5V is needed for components and 3.3V is needed for others.

Probably the most important factor of all in this comparison is the efficiency. The

LM7805 is only able to produce a maximum efficiency of 41%, while the LMZ12010

is able to produce one of 92%. The LMZ12010’s maximum efficiency is more than

twice that of the LM7805. As was said earlier, a lower efficiency value means

higher power dissipation. This means the chip is likely to heat up to high

temperatures, and a heat sink might have to be introduced to negate this.

However, the LMZ12010 has a very high efficiency, and although it will still

dissipate power, the amount of generated heat within the chip is relatively low. It

is for this reason that the step-down voltage regulator will be used to supply power

to the microcontroller.

6.2. Components
As seen below, Figure X shows the assorted parts required for building the
system.

110

Figure 56: Assorted System Parts

A table detailing the name of each part is listed below.

Table 15. Parts list

Reference Part Name

C1 OxGord Folding Shopping Cart, Black

B1 Power Patrol 12V 5A Sealed Lead Acid Battery

S1 PN532 RFID/NFC Shield 13.56MHz RFID

E1, E2 Uxcell Stroke Open Frame Electric Linear Solenoid,
DC 12V, 5.6 Ohm, 1 kg Force, 10 mm

G1 Adafruit Ultimate GPS Breakout

W1 ESP8266 Wifi Module

M1 ATmega328 (Arduino Uno)

111

6.2.1. Breadboard Testing
Testing was conducted for each component to see the overall functionality of the
components. The pins for each component were connected to a breadboard, and
from there, connected to Arduino UNO for testing. Shown below are three figures
that depict the breadboard component testing.

6.2.2. GPS
This section details the GPS module of our SmartKart shopping system. It includes
the design of the module, as well as the test procedures and results.

6.2.2.1. Design
Seen below are the pin configurations for the Adafruit’s Ultimate GPS Breakout
v3 module.

Figure 57: PN532 Test Setup

Figure 58: ESP8266

 Figure 59: GPS Module Test Setup

Figure 60: Linear Voltage

Regulator Breadboard Test

112

Figure 61: Adafruit Ultimate GPS Breakout Pin Configuration

Seen below is a table which describes the use of each pin.

Table 16. Adafruit Ultimate GPS Breakout pin description

Pin Number Pin Configuration

1 PPS

2 VIN

3 GND

4 RX

5 TX

6 FIX

7 VBAT

8 EN

9 3.3v

6.2.2.2. Testing
Adafruit provides a library of functions that aid in interfacing with the GPS module.
Establish a connection when call SoftwareSerial mySerial(TXPin,RxPin). The
GPS module’s TX and RX pins transmit data at a baudRate of 9600, requiring the
read frequency to be lower to lower chances of background interrupts affect main
thread operations. Calling the GPS.sendCommand() function with a
checksummed NMEA sentences to define the data wish to acquire and configure
number of times to perform reads per second. The GPS can return the time and

113

date, number of satellites connected to, and longitude and latitude via Google
Maps and perform logging. Test results show this GPS module is within a ten-
meter range of the actual location. The test set up for the Ultimate GPS Breakout
can be seen above in Figure 59.

6.2.3. Locking
The Uxcell Electric Linear Solenoid takes in 12V DC to push the rod out a distance
of 8 millimeters. The electromagnetic has two wires. One wire supplies the load
current to directly power the electromagnet, and the other wire goes out to ground.
During testing, the electromagnet pushed out the rod with a decent amount of
force. The amount of friction and force was enough to lock the rear wheel of the
shopping cart when it came into contact with the rod. The electromagnet’s input
voltage will not be powered by the buck converter. Rather, the input voltage will be
supplied directly by the 12V sealed lead acid battery. The microcontroller will have
control over when 12V will be supplied to the electromagnet. Further testing will
need to be done to see how this approach will be implemented.

6.2.4. RFID
This section details the RFID module of our SmartKart shopping system. It includes the
design of the module, as well as the test procedures and results.

6.2.4.1. Design
Seen below are the pin configurations for the Adafruit PN532 RFID/NFC Shield:

Figure 62: Adafruit PN532 RFID/NFC Shield Pin Configuration

Shown below is a table detailing the description of each pin.

114

Table 17. Adafruit PN532 RFID/NFC Shield pin description

Pin Number Pin Description Pin Number Pin Description

1 N/A 17 ARef

2 IQR 18 GND

3 RST 19 Pin 13, Digital I/O

4 3V 20 Pin 12, Digital I/O

5 5V 21 Pin 11, Digital I/O

6 GND 22 Pin 10, Digital I/O

7 GND 23 Pin 9, Digital I/O

8 Vin 24 Pin 8, Digital I/O

9 Pin 0, Analog In 25 Pin 7, Digital I/O

10 Pin 1, Analog In 26 Pin 6, Digital I/O

11 Pin 2, Analog In 27 Pin 5, Digital I/O

12 Pin 3, Analog In 28 Pin 4, Digital I/O

13 Pin 4, Analog In 29 Pin 3, Digital I/O

14 Pin 5, Analog In 30 Pin 2, Digital I/O

15 SCL 31 Pin 1, Digital I/O

16 SDA 32 Pin 0, Digital I/O

The RFID sensor can communicate using I2C by default, but can also
communicate using SPI. For this project, I2C will be used because less pins are

115

used. I2C uses 3 pins overall. Analog input pins 4 and 5 are used to communicate
and digital I/O pin 2 is used as to generate interrupt service routines (ISR).

6.2.4.2. Testing
The Adafruit PN532 RFID/NFC Shield was attached to an Arduino UNO and some
code was uploaded to the UNO to test if the shield would read RFID tags.
Additionally, maximum distance in which the PN532 was able to read RFID tags
was also sought after. The test setup can be seen in Figure 57.

Adafruit provides a library of functions that aid in reading and writing RFIDs. An
I2C connection can be established by calling on Adafruit_PN532 nfc(PN532_IRQ,
PN532_RESET). PN532_IRQ is denoted as the interrupt pin (pin 2) and
PN532_RESET as the reset pin (pin 3). The readPassiveTargetID() function is
responsible for reading RFID tags that come into contact with the PN532. The
PN532 is compliant with ISO 14443A and MIFARE tags. The maximum distance
in which an RFID tag was read was approximately 3.5 inches.

6.2.5. Wi-Fi Communication
This section details the WiFi module of our SmartKart shopping system. It
includes the design of the module, as well as the test procedures and results.

6.2.5.1. Design
Seen below are the pin configurations for the ESP8266 WiFi Module.

Figure 63: ESP8266 WiFi Module Pin Configuration

Seen below is a table which describes the use of each pin.

116

Table 18. ESP Wi-Fi module pin description

Pin Number Pin Configuration

1 TX

2 GND

3 CH_PD

4 GPIO2

5 RST

6 GPIO0

7 VCC

8 RX

6.2.5.2. Testing
Pins 3, 4, and 6 are not used for any purpose in the testing, and are therefore left
unconnected. The VCC pin is only able to within an input voltage of 3.3V. Anything
above this might damage the hardware of the ESP8266. During testing, the
ESP8266 was able to stay connected to a router over varying distances. The
longest recorded range the ESP8266 was able to stay connected was roughly over
1,000 feet. Arduino libraries are provided to easily connect to a network. The
ESP8266 library provides a begin() function, where the network name and
password are passed in to establish a connection. Figure 58 shows the setup of
the WiFi module along with the Arduino UNO.

6.3. Schematic Design
A schematic of the overall system wired around the ATmega328P has been
produced. It was important to consider some details when designing the
microcontroller schematic. First, the microcontroller and other integrated circuits
are prone to being damaged by ripple voltage when present. To resolve this,
decoupling capacitors were used at the pins where the primary voltage for the
microcontroller and integrated circuits were supplied. A secondary external clock
is desirable to control interrupts within the system. A 32MHz crystal oscillator is
used to achieve this, with a two 6 picofarad capacitors used as the load

117

capacitance. The headers for each integrated circuit are wired to the respective
matching pin on the microcontroller.

To drive the 12V electronic locks, a sealed relay, diode, and PNP bipolar junction

transistor is used to switch the input voltage of the locks on and off. Digital pin 7

on the microcontroller is used to switch the electronic locks on. When PD7 is

switched to HIGH, 3.3 volts is supplied to the base of the transistor, thus providing

12 volts to reach positive terminal of the electronic locks.

When implementing the actual hardware components of the project, some

considerations were taken. Only one Atmega328P microcontroller was used

initially to control the electromagnetic locks, RFID scanner, WIFI module, and GPS

module. During testing, however, it was observed that the GPS module and RFID

scanner would not function correctly while communicating with the one MCU. The

GPS module communicates with the MCU via serial, while the RFID scanner

communicates via the I2C interface.

The exact reason as to why the two components could not function correctly on

the same MCU was never found. It is suspected that the C++ libraries used to

create the embedded software somehow conflicted with one another. Another

suspicion is that the 16MHz clock rate the external crystal supplies is not enough

to execute the code to control the RFID scanner and GPS module in an efficient

manner.

The workaround was to modularize the components. To accomplish this, two

Atmega328P MCUs were used. Since the RFID scanner needs to pass a 16-byte

RFID tag to the WIFI module, one MCU is used to pass the RFID tag to the WIFI

module via serial. The WIFI module then sends the RFID tag to a server via a

POST request.

The GPS module is only specifically used to activate the electromagnetic locks

when the shopping cart goes out of the range of acceptable LLA boundaries.

Because of this, the other MCU communicates with the GPS module via serial and

constantly checks to see if the LLA coordinates received are within acceptable

boundaries.

The electromagnetic locks are activated by a single pin double throw (SPDT) relay,

which is driven by GPIO pins on each MCU. When the circuit is powered on, the

MCU that the controls the RFID scanner and WIFI module a GPIO pin to a logical

high, which activates the relay. The WIFI module also has GPIO16 set to high in

the power on stage, which is connected to another GPIO pin on the MCU. Once

the WIFI module connects to WIFI, GPIO16 goes to low, which makes MCU’s

GPIO pin connected to the relay go to low, thus deactivating the relay.

Additionally, the relay is activated by the other MCU when it receives LLA

coordinates that are out of the acceptable range. Each of the MCU’s relay GPIO

118

pins have diodes so that the current each one produces only travels to the relay.

The RFID scanner, GPS module, SPDT relay, and both Atmega328P MCUs

require 5V to function. The sealed lead acid battery to power the system provides

12V, so a 12V to 5V DC/DC step-down buck converter is used provide the correct

voltage to these components. Additionally, the WIFI module needs 3.3V to

function, so a 12V to 3.3V DC/DC step-down buck converter is used.

The figure below depicts the microcontroller schematic. The schematic was made

through the EAGLE CAD software. The headers and pin outlets for the WIFI

module, GPS module, RFID sensor, and electronic locks can be seen below.

Figure 64: Microcontroller Schematic

A table depicting the component details of the schematic can be seen below.

Table 19. Microcontroller Schematic Components Description

Reference
Designator

Value Part Number Type

C1, C2, C3 0.1μF 3M0802 Electrolytic
Capacitor

C4, C5 6pF 3M0802 Electrolytic
Capacitor

U2 - ATmega328P 28 Pin

R1 10KΩ

- Carbon
Composite

Resistor

119

Reference
Designator

Value Part Number Type

R2 1KΩ - Carbon
Composite

Resistor

Y2 32MHz XTAL13459 Crystal Oscillator

D1 - 1N4004 General-Purpose
Diode

Q1 - P2N2222AGOS-ND PNP BJT
Transistor

K1 - COM00100 Relay SPDT
Sealed

JP1 - - GPS Module

ESP01 - ESP8266 WIFI Module

JP2, JP3, JP4,
JP5

- PN532 RFID Sensor

JP6, JP7 - AL12120600UX0144 Electric Lock

120

7. Administrative content
This section contains all portions of the project related to management, including
our team’s milestones, budget plans, tools used, and the division of labor among
team members.

7.1. Milestones
The dates set for the milestones were determined based on the task and each
individual member’s individual schedules and duties in regards to that task. The
first set of milestones accomplished in Senior Design I are heavily related to
researching and designing the system, whereas the Senior Design II milestones
focus on the functionality portion of our project.

Table 20. Senior Design I Milestones

Number Task Start Date End Date Status

1 Ideas 1/9/17 1/17/17 Completed

2 Project Selection & Role
Divisions

1/18/17 1/21/17 Completed

 Project Documentation

3 Divide & Conquer 1/22/17 2/3/17 Completed

4 Updated Divide &
Conquer

1/22/17 2/17/17 Completed

6 Draft of Documentation 1/22/17 3/31/17 Completed

7 Final Documentation 1/22/17 4/27/17 Completed

 Research & Design

121

Number Task Start Date End Date Status

8 Research Components 1/25/17 4/26/17 Completed

9 Purchase Components 2/4/17 4/26/17 Completed

10 Prototype Hardware and
Software

4/5/17 4/26/17 Completed

Table 21. Senior Design II Milestones

Number Task Start Date End Date Status

 Administrative Tasks

1 CDR Presentation TBD TBD N/A

2 Peer Review TBD TBD N/A

3 Midterm Demo TBD TBD N/A

4 Final Presentation TBD TBD N/A

 Technical
Development

5 Software Development TBD TBD N/A

6 Hardware Development TBD TBD N/A

7 PCB Testing TBD TBD N/A

122

Number Task Start Date End Date Status

8 Software and Hardware
Integration

TBD TBD N/A

9 Finalize System
Integration and Testing

TBD TBD N/A

7.2. Budget Analysis
The following table displays the estimated costs for each individual component, as
well as the total cost for the system. As this project will be funded by our team, the
total cost will be evenly split between all four group members.

Table 22. Project budget

OBJECT QUANTITY EST. COST

RFID Scanner 1 $39.95

RFID Tags 50 $19.20

GPS 66 Channel Breakout Board 1 $39.95

Arduino Uno 1 $0.00

PCB 2 $70.00

Amazon AWS Backend 1 $50.00

Payment System 1 $50.00

123

OBJECT QUANTITY EST. COST

Shopping Cart 1 $40.00

BreadBoard (830 pins) 1 $2.99

40W Soldering Iron 1 $40.68

Solder Soldering Wire 1 $7.00

 Total: $359.77

Est. Total $359.77

Number Group Members 4

Est. Indv. Total $89.94

7.3. Tools
Here we discuss the tools our group used for writing and testing our code,
communicating, and tracking assigned tasks.

7.3.1. POSTMAN
POSTMAN is available as a desktop and chrome application. Allows the
developers to do testing for the system’s RESTful API by sending body data,
selecting header type, defining route URL, and include authentication information.
With POSTMAN, the developers can perform testing the API running on localhost
and in production and store a log of the requests made and responses returned.
With POSTMAN’s runner functionality, the developers can easily import test cases
to run on the API to perform in-depth testing. With POSTMAN’s Collection feature,
data from the request and responses can be organized in a way that mirrors the
layout of the API architecture. For instance, every request made to the API route:

124

api.example.com/math/multiply?lhs=<value>&rhs=<value> would generate a
folder with the test data used and responses called multiply inside the math folder.

Figure 65. Postman Layout

7.3.2. GitHub
A web-based Git version control repository. GitHub has free accounts, however,
if one requires private repository so the public cannot access their code we would
require accounts that offer private repositories. As students, we can apply for a
student developer account that allows students to create an unlimited number of
private repositories. One must create an account with an academic email and
provide evidence of current enrollment to receive the account. Once their
information has been verified the student can make free private repositories and
have access to a vast number of discounts for APIs and resources to build
applications. With GitHub, the developers can work on the system without having
to meet up or modify the system’s current build. Whenever a developer commits
code to the repository, they must include a link to the task their code relates to,
that way it is easy to keep track of changes in the case a revert is necessary.

7.3.3. Chrome Developer Tools
Set of web debugging tools that assist developers with modifying webpage layouts,
finding bugs in their code, and monitor how data is being transmitted between the
client and server. There is a feature to modify the view size of the page to easily
test how the web app looks and performs on different layout dimension. There are
nine main Developer Tool groups, however, we would be using the following ones
listed below:

Elements: allows for developers to make changes to the webpage’s DOM and
review element properties locally. This is the best tool to use when need to test

125

modifications of layout instead of modifying the source code and refreshing the
page.

Resources: allows developers to inspect and manage how data from the site is
being stored on the client’s device. Developers can review how session data, and
cached data is being stored. This can help developers check if the service workers
created are properly working.

Network: allow developers to review detailed information on network operations
like data sent, time to send and receive data, the destination sending the data and
data type. With the record feature, we can get real-time results of network
operations to do simple benchmarking and check if we are successfully receiving
the desired data.

Timelines: while the network panel shows a timeline of how long it takes for data
to be fetched, it is also important to know how long it takes for the application to
run on the device. This allows the developers to know the runtime of the program
and make decision for optimizing code.

Console: allows developers to interact with frontend code from browser. From
here developers can create/modify data, call functions, and send requests to the
server for testing. While the network tool lets developers know if the data was
successfully received, the developers can use the console tool to check if the
received data is correct.

7.3.4. Visual Studio Code
Microsoft’s open-source, lightweight platform independent IDE that with built-in
functionality and allows for 3rd party extension/plugin installation to improve
development. With built-in IntelliSense, developers can use the smart completion
feature to save time typing function definitions, variables, and imported
classes/modules. With built-in debugging, developers can launch and run the app
and review call stacks and variables at defined breakpoints in an interactive
console. Visual Studio Code provides embedded Git control, allowing for
developers to push, pull, and review commits. With extensions, developers can
import additional features that Visual Studio Code doesn’t provide like provide
language support for programming languages that are not supported with general
installation.

7.3.5. Slack
A group messaging application with an Android, iPhone, and Web App. We can
create group chats as well as individual chats, and alert selected people in the
group whenever there is a message we wish for them to read. Slack can
communicate with Trello to send notifications on status of tasks, allowing the group
to always know where they are in the development process. Unlike other group
messaging apps, Slack makes it easily to share code between each other with

126

their snippet feature. Users can upload code in any programming language and
provide a comment with the code snippet message. This saves time reviewing
code when discussing bugs are sharing information about new helper functions to
improve development process.

7.3.6. Trello
Trello is a simple solution to managing tasks, providing an easy to use elegant
user interface with powerful features. In Trello, managers can organize and get
detailed information on tasks. Managers can create a task, assign employees to
it, set a deadline when it must be completed, attach resource document from
various resources (Dropbox, Google Drive, OneDrive, computer storage, etc.),
checklists of requirements that must be meet for the task to be completed, and
view a log of any changes made to the card. Users can leave comments on the
status of the task on the card and every user assigned to the task will get a
notification of the comment. With Trello, we can easily see how everybody is doing
on their assigned tasks and make any changes to the assigned workload easily.

Figure 66. Trello Layout & Features

7.4. Division of Labor
This section displays the division of labor among team members. Each section of
the project was assigned a primary member to assume responsibilities, as well as
a secondary member to assist with that component.

Table 23. Division of Labor

COMPONENTS PRIMARY SECONDARY

127

Database Lucas Ryan (CS) Victoria Abreu (CS)

Email & Payment System Lucas Ryan (CS) Victoria Abreu (CS)

Communication Btw. Arduino Victoria Abreu (CS) Lucas Ryan (CS)

User interface Victoria Abreu (CS) Lucas Ryan (CS)

Power Distribution Doran Senior (CpE) Christina Heagney
(CpE)

GPS Doran Senior (CpE) Christina Heagney
(CpE)

Locking Mechanism Christina Heagney (CpE) Doran Senior (CpE)

RFID System Christina Heagney (CpE) Doran Senior (CpE)

PCB Christina Heagney (CpE) Doran Senior (CpE)

128

8. Project Summary
Our team's motivation and goals served as the primary factor in envisioning the
SmartKart shopping system, while the requirements and specifications that were
shaped in our design process helped bring the project to life.
The SmartKart’s infrastructure is made up of a multitude of different components
and modules, including technology such as wireless communication, GPS, and
RFID sensors. The integration of these modules into a single, uniform system will
allow for the creation of a useful and marketable product for the retail industry and
its consumers.

Our team has taken extra measures to ensure that the user’s safety is our top
priority. This includes building a hardware system that is safe to integrate into
shopping carts, as well as ensuring the software portion of our system is safe for
shoppers in regards to the security of their personal information, such as their
credit card numbers. The other top concern was the cost of the system; our team
was determined to create this product on a reasonable budget, in order to help
ensure its marketability potential in the industry.

The SmartKart shopping system was designed with the skills of the team members
in mind, and thus, the workload has been equally distributed among the members
of the computer science and computer engineering disciplines. The hardware
design aspects of the project were largely handled by the computer engineering
students, whereas the software design was primarily handled by the computer
science students. This workload division allowed for the team members to propose
unique ideas, and offer different technical skills and perspectives in regards to the
design and implementation of the overall project.

A1

9. Appendices

9.1. UML Diagram

A2

9.2. References
[1] "Amazon DynamoDB – NoSQL Cloud Database Service." Amazon Web

Services, Inc. N.p., n.d. Web. 10 Apr. 2017.
<https://aws.amazon.com/dynamodb/?hp=tile&so-exp=below>.

[2] "Amazon Relational Database Service (RDS) – AWS." Amazon Web
Services, Inc. N.p., n.d. Web. 10 Apr. 2017. <https://aws.amazon.com/rds/>.

[3] "App Engine - Build Scalable Web & Mobile Backends in Any
Language | Google Cloud Platform." Google. Google, n.d. Web. 10 Apr.
2017. <https://cloud.google.com/appengine/>.

[4] "AWS IoT - Amazon Web Services." Amazon Web Services, Inc. N.p., n.d.
Web. 10 Apr. 2017. <https://aws.amazon.com/iot/>.

[5] "AWS Lambda | Product Details." Amazon Web Services, Inc. N.p., n.d. Web.
10 Apr. 2017. <https://aws.amazon.com/lambda/details/>.

[6] C Coding Standard. N.p., n.d. Web. 10 Apr. 2017.
<https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html>.

[7] "Cloud Security – Amazon Web Services (AWS)." Amazon Web Services,
Inc. N.p., n.d. Web. 10 Apr. 2017. <https://aws.amazon.com/security/>.

[8] "Evaluating the Different Types of DBMS
Products." SearchDataManagement. N.p., n.d. Web. 10 Apr. 2017.
<http://searchdatamanagement.techtarget.com/feature/Evaluating-the-
different-types-of-DBMS-products>.

[9] Google Cloud Computing, Hosting Services & APIs | Google Cloud Platform.
Google, n.d. Web. 10 Apr. 2017. <https://cloud.google.com/>.

[10] Google Cloud Computing, Hosting Services & APIs | Google Cloud
Platform. Google, n.d. Web. 10 Apr. 2017.
<https://cloud.google.com/?utm_source>.

[11] Google Infrastructure Security Design Overview | Solutions | Google
Cloud Platform. Google, n.d. Web. 10 Apr. 2017.
<https://cloud.google.com/security/security-design/>.

[12] McMahon, Caolan. Node.js: Style and Structure. N.p., n.d. Web. 10 Apr.
2017. <https://caolan.org/posts/nodejs_style_and_structure.html>.

[13] "NoSQL Databases Explained." MongoDB. N.p., n.d. Web. 10 Apr. 2017.
<https://www.mongodb.com/nosql-explained>.

[14] Version Control Concepts and Best Practices. N.p., n.d. Web. 10 Apr.
2017. <https://homes.cs.washington.edu/~mernst/advice/version-
control.html#best-practices>.

[15] "What Is Amazon Web Services (AWS)? - Definition from
WhatIs.com." WhatIs.com. N.p., n.d. Web. 10 Apr. 2017.
<http://whatis.techtarget.com/definition/Amazon-Web-Services-AWS>.

[16] "What Is Cloud Computing? - Amazon Web Services." Amazon Web
Services, Inc. N.p., n.d. Web. 10 Apr. 2017. <https://aws.amazon.com/what-
is-cloud-
computing/?sc_channel=PS&sc_campaign=acquisition_US&sc_publisher=go
ogle&sc_medium=cloud_computing_b&sc_content=sitelink&sc_detail=amazo
n%2Bwebservices&sc_category=cloud_computing&sc_segment=what_is_clo
ud_computing&sc_matchtype=p&sc_country=US&s_kwcid=AL%214422%21

A3

3%21175074967375%21p%21%21g%21%21amazon%2Bwebservices&ef_id
=V0PHGAAABBS0lBcb%3A20170324171055%3As>.

[17] "What Is NoSQL (Not Only SQL Database)? - Definition from
WhatIs.com." SearchDataManagement. N.p., n.d. Web. 10 Apr. 2017.
<http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-
SQL>.

[18] "What Is Relational Database Management System (RDBMS)? - Definition
from WhatIs.com." SearchSQLServer. N.p., n.d. Web. 10 Apr. 2017.
<http://searchsqlserver.techtarget.com/definition/relational-database-
management-system>.

[19] Sam Davis, Editor-in-Chief | May 24, 2013. "Back to Basics: Voltage
Regulator ICs, Part 1."Power Electronics. N.p., 10 June 2013. Web. 24 Apr.
2017. <http://powerelectronics.com/regulators/back-basics-voltage-regulator-
ics-part-1>

[20] Understanding Boost Power Stages in Switchmode Power Supplies (n.d.):
n. pag. Ti.com. Texas Instruments. Web. 20 Mar. 2017.
<http://www.ti.com/lit/an/slva061/slva061.pdf>.

[21] Zhang, Henry J. "Basic Concepts of Linear Regulator and Switching Mode
Power Supplies."Cds.linear.com. Linear Technology, Oct. 2013. Web. 20 Mar.
2017. <http://cds.linear.com/docs/en/application-note/AN140fa.pdf+>.

[22] "Linear and Switching Voltage Regulator Fundamental Part 1." Ti.com.
Texas Instruments, n.d. Web. 20 Mar. 2017.
<http://www.ti.com/lit/an/slva061/slva061.pdf+>

[23] Johnson, Dana J. "Overcoming Challenges to Transformational Space
Programs: The Global Positioning System (GPS)." Northropgrumman.com.
Northrop Grumman, Oct. 2006. Web. 20 Mar. 2017.
<http://www.northropgrumman.com/AboutUs/AnalysisCenter/Documents/pdfs
/Overcoming-Challenges-to-Trans.pdf+>.

[24] Marshall Brain & Tom Harris "How GPS Receivers Work" 25 September
2006.

[25] HowStuffWorks.com.
<http://electronics.howstuffworks.com/gadgets/travel/gps.htm> 25 April 2017

[26] Pugh, Evan. "Decoding the GPS Signal." Xenon.colorado.edu. GPS
Reflections Research Group, n.d. Web. 20 Mar. 2017.
<http://xenon.colorado.edu/spotlight/index.php?action=kb&page=42>.

[27] "NEO-6 U-blox 6 GPS Modules Data Sheet." NEO-6 (n.d.): n. pag. U-
blox.com. Web. 20 Mar. 2017. <NEO-6 u-blox 6 GPS Modules Data Sheet>.

[28] Dahl, Øyvind Nydal. "Microcontroller Tutorial 3/5: How To Design the
Circuit." Build Electronic Circuits. Microcontroller Tutorial 3/5: How To Design
a Microcontroller Circuit, 09 Oct. 2015. Web. 20 Mar. 2017. <http://www.build-
electronic-circuits.com/microcontroller-tutorial-part3/>.

[29] "1187-2002 - IEEE Recommended Practice for Installation Design and
Installation of Valve-Regulated Lead-Acid Batteries for Stationary
Applications." IEEE SA - 1187-2002 - IEEE Recommended Practice for
Installation Design and Installation of Valve-Regulated Lead-Acid Batteries for

A4

Stationary Applications. IEEE, 01 Aug. 2002. Web. 30 Mar. 2017.
<https://standards.ieee.org/findstds/standard/1187-2002.html>.

[30] "PN532/C1 NFC Controller." (n.d.): n. pag. Cdn-shop.adafruit.com.
Adafruit, 31 Mar. 2011. Web. 30 Mar. 2017. <https://cdn-
shop.adafruit.com/datasheets/pn532ds.pdf>.

[31] (n.d.): n. pag. Atmel.com. Atmel Corporation. Web. 30 Mar. 2017.
<http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-
ATmega328-328P_Datasheet.pdf>.

[32] (n.d.): n. pag. Sparkfun.com. Texas Instruments, May 2003. Web. 30 Mar.
2017. <https://www.sparkfun.com/datasheets/Components/LM7805.pdf>.

[33] "LMZ12010 10-A SIMPLE SWITCHER® Power Module With 20-V
Maximum Input Voltage." 10.1 (1986): 118. Ti.com. Texas Instruments, Aug.
2015. Web. 25 Apr. 2017. <http://www.ti.com/lit/ds/symlink/lmz12010.pdf>.

[34] AngularJS - Superheroic JavaScript MVW Framework. N.p., n.d. Web. 24
Apr. 2017.

[35] "Application Fundamentals." Android Developers. N.p., n.d. Web. 24 Apr.
2017.

[36] "Documentation." Stripe. N.p., n.d. Web. 24 Apr. 2017.
[37] ECollege, Todd Fredrich Pearson. "REST API Quick Tips." RESTful

Services Quick Tips. N.p., n.d. Web. 24 Apr. 2017.
[38] Express - Node.js Web Application Framework. N.p., n.d. Web. 24 Apr.

2017.
[39] Foundation, Node.js. "About Node.js®." About | Node.js. N.p., n.d. Web.

24 Apr. 2017.
[40] Kaazing. HTML5 WebSocket - A Quantum Leap in Scalability for the Web.

N.p., n.d. Web. 24 Apr. 2017.
[41] "Official PCI Security Standards Council Site - Verify PCI Compliance,

Download Data Security and Credit Card Security Standards." PCI Security
Standards Council®. N.p., n.d. Web. 24 Apr. 2017.

[42] Otwell, Taylor. "Installation." Installation - Laravel - The PHP Framework
For Web Artisans. N.p., n.d. Web. 24 Apr. 2017.

[43] "Overview." Architectural Overview of Cordova Platform - Apache
Cordova. N.p., n.d. Web. 24 Apr. 2017.

[44] "Representational State Transfer." Wikipedia. Wikimedia Foundation, 20
Apr. 2017. Web. 24 Apr. 2017.

[45] Socket.IO - Docs. N.p., n.d. Web. 24 Apr. 2017.
[46] "Top 10 2013-Top 10." Top 10 2013-Top 10 - OWASP. N.p., n.d. Web. 24

Apr. 2017.
[47] Trachier, Kevin. "API Basics: What Is SOAP?" API Basics: What Is

SOAP? | SoftLayer Blog. N.p., n.d. Web. 24 Apr. 2017.
[48] "Web | Google Developers." Google. Google, n.d. Web. 24 Apr. 2017.
[49] Digital image. N.p., n.d. Web. 24 Apr. 2017.

<https://cordova.apache.org/static/img/guide/cordovaapparchitecture.png>.
[50] Digital image. N.p., n.d. Web. 24 Apr. 2017.

<https://angular.io/resources/images/devguide/architecture/overview2.png>.

A5

[51] Mitchell, Bradley. "What's 802.11? What These Wireless Standards Mean."

Lifewire. N.p., 23 Feb. 2017. Web. 25 Apr. 2017.

<https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-

816553>.

[52] "How does an Electromagnetic Lock Operate?" YLI Electronic. N.p., n.d. Web. 25
Apr. 2017. <http://www.yli.cn/en/customer/FAQ/2013-02-01/474.html>.

[53] Solutions, LLC ITech. "Gatekeeper Systems, Inc." Gatekeeper Systems, Inc. |

Solutions | CartControl® Shopping Cart Retention FAQ's. N.p., n.d. Web. 25 Apr.

2017.

[54] Carttronics. "Innovate. save. profit.™." Carttronics. N.p., n.d. Web. 25 Apr.

2017. <https://www.carttronics.com/CAPS.asp>.

[55] Industries, Adafruit. "Adafruit Bluefruit LE SPI Friend - Bluetooth Low Energy

(BLE)." Adafruit industries blog RSS. N.p., n.d. Web. 25 Apr. 2017.

[56] "BlueTooth-HC05-HC06-Modules-How-To." Arduino-info. N.p., n.d. Web. 25

Apr. 2017. <https://arduino-info.wikispaces.com/BlueTooth-HC05-HC06-Modules-

How-To>.

[57] Industries, Adafruit. "Adafruit ATWINC1500 WiFi Breakout." Adafruit

industries blog RSS. N.p., n.d. Web. 25 Apr. 2017.

[58] "WiFi Module - ESP8266." WRL-13678 - SparkFun Electronics. N.p., n.d. Web.

25 Apr. 2017. <https://www.sparkfun.com/products/13678>.

9.3. Copyright Permissions

A6

